Replication of the ColE1 group plasmids is kinetically regulated by the interaction between plasmid-encoded primer RNA II and antisense RNA I. The binding is dependent on alternative RNA II conformations, formed during the transcription, and effectively inhibits the primer function within some time interval. In this paper, the folding pathways for the wild type and copy number mutants of ColE1 RNA II are studied using simulations by a genetic algorithm, The simulated pathways reveal a transient formation of a metastable structure, which is stabilized by copy number mutations. The folding kinetics of the proposed conformational transitions is calculated using a model of a multistep refolding process with elementary steps of double-helical stem formation or disruption, The approximation shows that the lifetime of the metastable structure is relatively long and is considerably increased in the mutants, resulting in a delay of the formation of the stable RNA II structure, which is the most sensitive to the inhibition by the antisense RNA I. Thus the effect of copy number mutations can be interpreted as a compression of the time window of effective inhibition due to an increased time spent by the RNA II in the metastable state. The implications of metastable foldings in RNA functioning are discussed.