STATISTICAL THERMODYNAMICS OF AMPHIPHILE CHAINS IN MICELLES

被引:71
作者
BENSHAUL, A
SZLEIFER, I
GELBART, WM
机构
[1] UNIV CALIF LOS ANGELES,DEPT CHEM,LOS ANGELES,CA 90024
[2] HEBREW UNIV JERUSALEM,FRITZ HABER RES CTR MOLEC DYNAM,IL-91904 JERUSALEM,ISRAEL
来源
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES | 1984年 / 81卷 / 14期
关键词
D O I
10.1073/pnas.81.14.4601
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:4601 / 4605
页数:5
相关论文
共 17 条
[1]   POLYMORPHISM OF INTERFACES [J].
CHARVOLIN, J .
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1983, 80 (01) :15-23
[2]   MOLECULAR-ORGANIZATION IN MICELLES AND VESICLES [J].
DILL, KA ;
FLORY, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (02) :676-680
[3]   INTERPHASES OF CHAIN MOLECULES - MONOLAYERS AND LIPID BILAYER-MEMBRANES [J].
DILL, KA ;
FLORY, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1980, 77 (06) :3115-3119
[4]  
GRUEN DWR, 1984, SURFACTANTS SOLUTION
[5]   MONTE-CARLO STUDY OF A SIMPLE-MODEL FOR MICELLE STRUCTURE [J].
HAAN, SW ;
PRATT, LR .
CHEMICAL PHYSICS LETTERS, 1981, 79 (03) :436-440
[6]   PHYSICAL PRINCIPLES OF MEMBRANE ORGANIZATION [J].
ISRAELACHVILI, JN ;
MARCELJA, S ;
HORN, RG .
QUARTERLY REVIEWS OF BIOPHYSICS, 1980, 13 (02) :121-200
[7]   THEORY OF SELF-ASSEMBLY OF HYDROCARBON AMPHIPHILES INTO MICELLES AND BILAYERS [J].
ISRAELACHVILI, JN ;
MITCHELL, DJ ;
NINHAM, BW .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1976, 72 :1525-1568
[8]   CONFORMATIONAL-ANALYSIS OF ALIPHATIC CHAINS AT INTERFACES - INFLUENCE OF THE RADIUS OF CURVATURE [J].
LEMAIRE, B ;
BOTHOREL, P .
MACROMOLECULES, 1980, 13 (02) :311-318
[9]   STATISTICAL MECHANICS OF ALIPHATIC CHAIN LAYERS, INFLUENCE OF CHAIN-LENGTH MIXING. [J].
Lemaire, B. ;
Bothorel, P. .
Journal of polymer science. Part A-2, Polymer physics, 1982, 20 (05) :867-875
[10]  
Levine R. D., 1979, MAXIMUM ENTROPY FORM