NUMERICAL CONFORMAL MAPPING VIA THE SZEGO KERNEL

被引:42
作者
KERZMAN, N
TRUMMER, MR
机构
[1] UNIV N CAROLINA,DEPT MATH,CHAPEL HILL,NC 27514
[2] MIT,DEPT MATH,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0377-0427(86)90133-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:111 / 123
页数:13
相关论文
共 19 条
[1]  
ATKINSON KE, 1976, SURVEY NUMERICAL MET
[2]  
BERGMAN S, 1970, AMS MATH SURVEYS, V5
[3]   A FREDHOLM INTEGRAL-EQUATION OF THE 2ND KIND FOR CONFORMAL MAPPING [J].
BERRUT, JP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 14 (1-2) :99-110
[4]  
BERRUT JP, 1985, UNPUB EQUIVALENCE ME
[5]  
BERRUT JP, 1984, THESIS ETH ZURICH
[6]   MATRICES A = I + H, H SKEW-SYMMETRIC [J].
BUCKLEY, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1974, 54 (02) :125-126
[7]  
Gaier D., 1964, KONSTRUKTIVE METHODE
[8]   FAST FOURIER METHODS IN COMPUTATIONAL COMPLEX ANALYSIS [J].
HENRICI, P .
SIAM REVIEW, 1979, 21 (04) :481-527
[9]  
HENRICI P, UNPUB APPLIED COMPUT, V3
[10]   CAUCHY KERNEL, SZEGO KERNEL, AND RIEMANN MAPPING FUNCTION [J].
KERZMAN, N ;
STEIN, EM .
MATHEMATISCHE ANNALEN, 1978, 236 (01) :85-93