ROLE OF INTERFRAGMENTARY STRAIN IN FRACTURE-HEALING - OVINE MODEL OF A HEALING OSTEOTOMY

被引:104
作者
CHEAL, EJ
MANSMANN, KA
DIGIOIA, AM
HAYES, WC
PERREN, SM
机构
[1] LAB EXPTL SURG, DAVOS, SWITZERLAND
[2] HARVARD UNIV, SCH MED, BOSTON, MA 02115 USA
关键词
FRACTURE HEALING; SECONDARY BONE HEALING; INTERFRAGMENTARY STRAIN; FINITE ELEMENT ANALYSIS; PLATE FIXATION;
D O I
10.1002/jor.1100090116
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
It has been hypothesized that the histological pattern of fracture healing is controlled at least in part by the local mechanical strains in the interfragmentary region. To test this "interfragmentary strain hypothesis," we applied cyclic bending deformations to tibial osteotomies in 11 sheep. An instrumented flexible plate spanning a 1-mm osteotomy gap was deformed to create a gradient of tissue elongation from 10% under the plate to 100% at the opposite cortex. The cyclic deformations were applied three times per minute, 24 h per day, for 1-5 weeks. However, as a result of tissue differentiation, the bone-plate complex increased in stiffness with healing time, resulting in a marked reduction of the gap deformation at approximately 4 weeks. Fracture healing was evaluated using vascular injection of India ink and conventional histology. A nonlinear three-dimensional finite element model of the interfragmentary tissue at the initial stage of healing was used to predict the complex tissue strains. The ingrowth of vascularized soft tissue into the interfragmentary gap, as well as the subsequent differentiation of this tissue, occurred earlier and to a greater degree in regions of lower strain. In contrast, the proliferation of callus tissue was greatest at the periosteal and endosteal surfaces of the cortex opposite the plate. Direct comparison of the finite element predictions with the histology demonstrated that the spatial distribution of bone resorption at the fracture fragment ends directly corresponded to the locations of elevated tissue strain and stress. However, there was no consistent numerical relationship between the magnitude of these local peak strains and the corresponding volume of cortical bone resorption over the bone cross section.
引用
收藏
页码:131 / 142
页数:12
相关论文
共 38 条
[31]  
SCHENK R, 1967, Symposia Biologica Hungarica, V7, P75
[32]   STRUCTURAL-PROPERTIES OF IMMATURE CANINE BONE [J].
TORZILLI, PA ;
TAKEBE, K ;
BURSTEIN, AH ;
HEIPLE, KG .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1981, 103 (04) :232-238
[33]   THE ADVANTAGES OF TITANIUM-ALLOY OVER STAINLESS-STEEL PLATES FOR THE INTERNAL-FIXATION OF FRACTURES - AN EXPERIMENTAL-STUDY IN DOGS [J].
UHTHOFF, HK ;
BARDOS, DI ;
LISKOVAKIAR, M .
JOURNAL OF BONE AND JOINT SURGERY-BRITISH VOLUME, 1981, 63 (03) :427-434
[34]   EFFECTS OF COMPRESSION AND CYCLICAL LOADING ON FRACTURE HEALING - QUANTITATIVE BIOMECHANICAL STUDY [J].
WHITE, AA ;
PANJABI, MM ;
SOUTHWICK, WO .
JOURNAL OF BIOMECHANICS, 1977, 10 (04) :233-239
[35]   COMPARISON OF CYCLIC LOADING VERSUS CONSTANT COMPRESSION IN THE TREATMENT OF LONG-BONE FRACTURES IN RABBITS [J].
WOLF, JW ;
WHITE, AA ;
PANJABI, MM ;
SOUTHWICK, WO .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1981, 63 (05) :805-810
[36]   COMPARISON OF CORTICAL BONE ATROPHY SECONDARY TO FIXATION WITH PLATES WITH LARGE DIFFERENCES IN BENDING STIFFNESS [J].
WOO, SLY ;
AKESON, WH ;
COUTTS, RD ;
RUTHERFORD, L ;
DOTY, D ;
JEMMOTT, GF ;
AMIEL, D .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1976, 58 (02) :190-195
[37]   COMPARISON OF OSTEOTOMY HEALING UNDER EXTERNAL FIXATION DEVICES WITH DIFFERENT STIFFNESS CHARACTERISTICS [J].
WU, JJ ;
SHYR, HS ;
CHAO, EYS ;
KELLY, PJ .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1984, 66A (08) :1258-1264
[38]   THE BIOMECHANICS OF FRACTURE HEALING [J].
YAMAGISHI, M ;
YOSHIMURA, Y .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 1955, 37 (05) :1035-1068