EQUIVALENCE OF DISCRETE EULER EQUATIONS AND DISCRETE HAMILTONIAN-SYSTEMS

被引:34
作者
AHLBRANDT, CD
机构
[1] Department of Mathematics, University of Missouri, Columbia
关键词
D O I
10.1006/jmaa.1993.1413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erbe and Yan recently presented a discrete linear Hamiltonian system. Their system is a special case of the discrete Hamiltonian system Δy(n - l) = Hz(n, y(n), z(n - l))Δz(n - l) = -Hy(n, y(n), z(n - l)), where Δy(n - 1) = y(n) - y(n - 1). Under certain implicit solvability hypotheses, these systems are equivalent to the discrete Euler equation f(hook)y(n, yn, Δyn - l) = Δf(hook)r(n, yn, Δyn - l). A Reid Roundabout Theorem for linear recurrence relations -Knyn+1 + Bnyn - KTn-1yn-1 = 0 is shown to imply the corresponding result obtained by Erbe and Yan for discrete linear Hamiltonian systems. Furthermore, discrete linear Hamiltonian systems are shown to have a symplectic transition matrix. © 1993 Academic Press, Inc.
引用
收藏
页码:498 / 517
页数:20
相关论文
共 36 条
[1]  
ABRAHAM R, 1967, F MECHANICS
[2]  
AHLBRANDT C, IN PRESS SIAM J MATH
[3]  
AHLBRANDT C, 1985, 12TH 13TH P MIDW C 2, P1
[4]   THE EFFECT OF VARIABLE CHANGE ON OSCILLATION AND DISCONJUGACY CRITERIA WITH APPLICATIONS TO SPECTRAL THEORY AND ASYMPTOTIC THEORY [J].
AHLBRANDT, CD ;
HINTON, DB ;
LEWIS, RT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 81 (01) :234-277
[5]   RICCATI MATRIX DIFFERENCE-EQUATIONS AND DISCONJUGACY OF DISCRETE LINEAR-SYSTEMS [J].
AHLBRANDT, CD ;
HOOKER, JW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (05) :1183-1197
[6]  
AHLBRANDT CD, 1992, INT S NUM M, V103, P93
[7]  
AHLBRANDT CD, 1991, LECT NOTES PURE APPL, V129, P1
[8]  
AHLBRANDT CD, 1987, CANADIAN MATH SOC C, V8, P3
[9]  
AHLBRANDT CD, IN PRESS J DIFFERENT
[10]  
AHLBRANDT CD, IN PRESS GEOMETRIC A