EQUIVALENCE OF DISCRETE EULER EQUATIONS AND DISCRETE HAMILTONIAN-SYSTEMS

被引:34
作者
AHLBRANDT, CD
机构
[1] Department of Mathematics, University of Missouri, Columbia
关键词
D O I
10.1006/jmaa.1993.1413
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Erbe and Yan recently presented a discrete linear Hamiltonian system. Their system is a special case of the discrete Hamiltonian system Δy(n - l) = Hz(n, y(n), z(n - l))Δz(n - l) = -Hy(n, y(n), z(n - l)), where Δy(n - 1) = y(n) - y(n - 1). Under certain implicit solvability hypotheses, these systems are equivalent to the discrete Euler equation f(hook)y(n, yn, Δyn - l) = Δf(hook)r(n, yn, Δyn - l). A Reid Roundabout Theorem for linear recurrence relations -Knyn+1 + Bnyn - KTn-1yn-1 = 0 is shown to imply the corresponding result obtained by Erbe and Yan for discrete linear Hamiltonian systems. Furthermore, discrete linear Hamiltonian systems are shown to have a symplectic transition matrix. © 1993 Academic Press, Inc.
引用
收藏
页码:498 / 517
页数:20
相关论文
共 36 条
[31]  
PETERSON A, IN PRESS J DIFFERENT
[32]  
REID WT, 1958, PAC J MATH, V8, P147
[33]  
Reid WT., 1971, ORDINARY DIFFERENTIA
[34]  
REID WT, 1956, PAC J MATH, V6, P733
[35]   A CANONICAL INTEGRATION TECHNIQUE [J].
RUTH, RD .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1983, 30 (04) :2669-2671
[36]  
Vaughan D. R., 1970, IEEE Transactions on Automatic Control, VAC-15, P597, DOI 10.1109/TAC.1970.1099549