CONSTRUCTION AND REGULARITY OF SCALING FUNCTIONS

被引:24
作者
HERVE, L
机构
关键词
WAVELET; MULTIRESOLUTION APPROXIMATION; SCALING FUNCTION; TRANSFER OPERATOR; DYADIC INTERPOLATION;
D O I
10.1137/S0036141092240023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using spectral properties of the operators P(w)f(x) = w(x/2)f(x/2)+ w(x/2+1/2)f(x/2+1/2), we study the scaling functions phi associated to filters with infinite length. We compute the Sobolev coefficient of phi and more generally the larger coefficient s such that integral (+infinity)(-infinity)\phi(lambda)\(p)(1+\lambda\(ps))d lambda < +infinity, where 1 less than or equal to p < +infinity. We apply the results to dyadic interpolations.
引用
收藏
页码:1361 / 1385
页数:25
相关论文
共 27 条
[1]  
BERMAN A, 1979, COMPUTER SCI APPLIED
[2]  
CAVARETTA AS, 1991, MEM AM MATH SOC, V93, P1
[3]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[4]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[5]  
COHEN A, 1993, REV MAT IBEROAM, V9, P51
[6]   HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS [J].
CONZE, JP ;
RAUGI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :273-310
[7]  
CONZE JP, 1989, REGULARITE SOLUTIONS
[8]  
DAUBECHIES I, 1992, CBMS NSF REGIONAL C, V61
[9]  
DAUBECHIES I, 1992, SIAM J MATH ANAL, V24, P1031
[10]  
DESLAURIERS G, 1987, FRACTALS DIMENSIONS