UNIVERSAL COMPUTATION AND OTHER CAPABILITIES OF HYBRID AND CONTINUOUS DYNAMICAL-SYSTEMS

被引:90
作者
BRANICKY, MS [1 ]
机构
[1] MIT, DEPT ELECT ENGN & COMP SCI, CTR INTELLIGENT CONTROL SYST, CAMBRIDGE, MA 02139 USA
关键词
D O I
10.1016/0304-3975(94)00147-B
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We explore the simulation and computational capabilities of hybrid and continuous dynamical systems. The continuous dynamical systems considered are ordinary differential equations (ODEs), For hybrid systems we concentrate on models that combine ODEs and discrete dynamics (e.g., finite automata). We review and compare four such models from the literature. Notions of simulation of a discrete dynamical system by a continuous one are developed. We show that hybrid systems whose equations can describe a precise binary timing pulse (exact clock) can simulate arbitrary reversible discrete dynamical systems defined on closed subsets of R''. The simulations require continuous ODEs in R(2n) with the exact clock as input. All four hybrid systems models studied here can implement exact clocks. We also prove that any discrete dynamical system in Z'' can be simulated by continuous ODEs in R(2n+1). We use this to show that smooth ODEs in R(3) can simulate arbitrary Turing machines, and hence possess the power of universal computation. We use the famous asynchronous arbiter problem to distinguish between hybrid and continuous dynamical systems. We prove that one cannot build an arbiter with devices described by a system of Lipschitz ODEs. On the other hand, all four hybrid systems models considered can implement arbiters even if their ODEs are Lipschitz.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 37 条
[11]   DYNAMIC-SYSTEMS THAT SORT LISTS, DIAGONALIZE MATRICES, AND SOLVE LINEAR-PROGRAMMING PROBLEMS [J].
BROCKETT, RW .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 146 :79-91
[12]  
BROCKETT RW, 1993, PROG SYST C, V14, P29
[13]  
BROCKETT RW, 1989, LECT NOTES CONTROL I, V135, P19
[14]  
COSNARD M, 1993, LECTURE NOTES COMPUT, V665
[15]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[16]  
Devaney R L, 1989, INTRO CHAOTIC DYNAMI
[17]  
GROSSMAN RL, 1993, LECTURE NOTES COMPUT, V736
[18]  
HIRSCH MW, 1974, DIFFERNETIAL EQUATIO
[19]  
Hopcroft J. E., 1979, INTRO AUTOMATA THEOR
[20]  
KURKA P, 1993, SIMULATION DYNAMICAL