LIE ALGEBRAIC METHODS AND SOLUTIONS OF LINEAR PARTIAL-DIFFERENTIAL EQUATIONS

被引:24
作者
DATTOLI, G
RICHETTA, M
SCHETTINI, G
TORRE, A
机构
[1] ENEA,DIPARTIMENTO FUS,CRE FRASCATI,FRASCATI,ITALY
[2] UNIV ROME LA SAPIENZA,DIPARTIMENTO ELETTRON,I-00185 ROME,ITALY
关键词
D O I
10.1063/1.528937
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, an algebraic method to obtain the solution of linear partial differential equations of the evolution type is discussed. The proposed method exploits the Lie differential operators and their matrix realization, to reduce the equation to an easily solvable generalized matrix form. Some applications to problems of specific interest are also discussed. © 1990 American Institute of Physics.
引用
收藏
页码:2856 / 2863
页数:8
相关论文
共 24 条
[11]   LIE THEORY AND SEPARATION OF VARIABLES .5. EQUATIONS IUT+U++=O AND IUT+U++-C-X2 U=O [J].
KALNINS, EG ;
MILLER, W .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (10) :1728-1737
[12]  
LIE S, 1891, DIFFERENTIALGLIEICHU
[13]  
MILLER W, 1964, LIE ALGEBRAS SOME SP
[14]  
Miller W., 1977, SYMMETRY SEPARATION
[15]  
OLVER PJ, 1986, APPLICATIONS LIE GRO
[16]  
Schrodinger E., 1940, P R IRISH ACAD A, V46, P9
[17]  
Srivastava HM, 1984, TREATISE GENERATING
[18]   APPLICATIONS OF LIE ALGEBRAIC FORMULAS OF BAKER, CAMPBELL, HAUSDORFF, AND ZASSENHAUS TO CALCULATION OF EXPLICIT SOLUTIONS OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
STEINBERG, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1977, 26 (03) :404-434
[19]  
Vilenkin N. Ja., 1968, SPECIAL FUNCTIONS TH
[20]  
Weisner L, 1955, PACIFIC J MATH, V5, P1033, DOI [10.2140/pjm.1955.5.1033, DOI 10.2140/PJM.1955.5.1033]