MULTIPARAMETER BIFURCATION OF A PREDATOR-PREY SYSTEM

被引:36
作者
HAINZL, J
机构
关键词
PREDATOR-PREY SYSTEM; BIFURCATION; UNFOLDING; STABILITY; PARAMETER DEPENDENT INTEGRAL; LIMIT CYCLE; HOMOCLINIC ORBIT;
D O I
10.1137/0523008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a two-dimensional predator-prey system, proposed by Bazykin and depending on several parameters, a complete local bifurcation analysis with respect to all parameters is achieved. The major part of the paper is devoted to the unfolding of a degenerate codimension-2 bifurcation occurring for a one-dimensional subset of parameters. The main problem here consists in studying parameter dependent integrals which are not algebraic.
引用
收藏
页码:150 / 180
页数:31
相关论文
共 11 条
[1]  
Amann H., 1983, GEWOHNLICHE DIFFEREN
[2]   THE INFLUENCE OF PREDATOR SATURATION EFFECT AND COMPETITION AMONG PREDATORS ON PREDATOR-PREY SYSTEM DYNAMICS [J].
BAZYKIN, AD ;
BEREZOVSKAYA, FS ;
DENISOV, GA ;
KUZNETZOV, YA .
ECOLOGICAL MODELLING, 1981, 14 (1-2) :39-57
[3]  
BAZYKIN AD, 1976, INT I APPL SYSTEMS A
[4]  
CARR J, 1981, APPLIED MATH SCI, V35
[5]  
Chow S.-N., 1982, METHODS BIFURCATION
[6]  
GROBNER W, 1966, INTEGRALTAFEL 2, V2
[7]   MULTIPLE BIFURCATION PROBLEMS OF CODIMENSION-2 [J].
GUCKENHEIMER, J .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (01) :1-49
[8]  
GUCKENHEIMER J, 1983, APPLIED MATH SCI, V42
[10]   BIFURCATIONS AND TRAJECTORIES JOINING CRITICAL-POINTS [J].
KOPELL, N ;
HOWARD, LN .
ADVANCES IN MATHEMATICS, 1975, 18 (03) :306-358