Genotypic analysis of respiratory mucous sulfation defects in cystic fibrosis

被引:90
作者
Zhang, YL
Doranz, B
Yankaskas, JR
Engelhardt, JF
机构
[1] UNIV PENN, MED CTR, INST HUMAN GENE THERAPY, DEPT MOLEC & CELLULAR ENGN, PHILADELPHIA, PA 19104 USA
[2] WISTAR INST ANAT & BIOL, PHILADELPHIA, PA 19104 USA
[3] UNIV N CAROLINA, CHAPEL HILL, NC 27514 USA
关键词
cystic fibrosis; pathophysiology; mucus; airway epithelium;
D O I
10.1172/JCI118372
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Intracellular dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) has been proposed to alter endosomal acidification, The most widely studied consequence of this defect has been alterations in the biochemical properties of cystic fibrosis (CF) respiratory mucus glycoproteins. However, studies confirming the existence of mucous processing defects in CF have been hindered by the lack of in vivo animal models by which to test these hypotheses in the absence of secondary effects of chronic bacterial infection. The human bronchial xenograft model has been useful in evaluating the pathophysiologic differences between CP and non-CF airway epithelium, in the absence of secondary disease effects such as goblet cell hyperplasia. In this study we sought to compare the extent of sulfation within secreted mucus glycoproteins from CF and non-CF human bronchial xenografts. Cumulative results of xenografts generated from 13 independent CF tissue samples demonstrated a statistically significant higher level of sulfation (1.7+/-0.18, P < 0.026) as compared to non-CF paired controls. Such findings add to the growing body of knowledge that primary defects in sulfation exist in CF respiratory mucin. Correlation of genotype with the extent of mucus sulfation revealed two categories of CF tissues with statistically different mucus sulfation profiles. Results from these studies demonstrated a 2.0+/-0.15-fold higher level of mucus sulfation produced from xenografts of five defined CF genotypes as compared to non-CF controls (P < 0.004, n = 10), Interestingly, three CF samples for which one mutant allele remained undefined (Delta F508/unknown or G551D/unknown) demonstrated no statistical difference in the level of sulfation as compared with matched non-CF controls (n = 3). This as yet unknown allele was not identified within a screen for the 26 most common CF mutations, These results provide preliminary evidence for allelic variation within the CF population which may begin to elucidate the structure-function of CFTR with regards to intracellular mucus processing defects.
引用
收藏
页码:2997 / 3004
页数:8
相关论文
共 33 条
  • [31] ADENOVIRUS-MEDIATED GENE-TRANSFER TRANSIENTLY CORRECTS THE CHLORIDE TRANSPORT DEFECT IN NASAL EPITHELIA OF PATIENTS WITH CYSTIC-FIBROSIS
    ZABNER, J
    COUTURE, LA
    GREGORY, RJ
    GRAHAM, SM
    SMITH, AE
    WELSH, MJ
    [J]. CELL, 1993, 75 (02) : 207 - 216
  • [32] SAFETY AND EFFICACY OF REPETITIVE ADENOVIRUS-MEDIATED TRANSFER OF CFTR CDNA TO AIRWAY EPITHELIA OF PRIMATES AND COTTON RATS
    ZABNER, J
    PETERSEN, DM
    PUGA, AP
    GRAHAM, SM
    COUTURE, LA
    KEYES, LD
    LUKASON, MJ
    STGEORGE, JA
    GREGORY, RJ
    SMITH, AE
    WELSH, MJ
    [J]. NATURE GENETICS, 1994, 6 (01) : 75 - 83
  • [33] LUNG-DISEASE IN CYSTIC-FIBROSIS - AN UPDATED CONCEPT
    ZACH, MS
    [J]. PEDIATRIC PULMONOLOGY, 1990, 8 (03) : 188 - 202