LAMINATED LATTICES

被引:31
作者
CONWAY, JH [1 ]
SLOANE, NJA [1 ]
机构
[1] BELL TEL LABS INC,MURRAY HILL,NJ 07974
关键词
D O I
10.2307/2007025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:593 / 620
页数:28
相关论文
共 37 条
[11]   23 CONSTRUCTIONS FOR THE LEECH LATTICE [J].
CONWAY, JH ;
SLOANE, NJA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1781) :275-283
[12]   THE COVERING RADIUS OF THE LEECH LATTICE [J].
CONWAY, JH ;
PARKER, RA ;
SLOANE, NJA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 380 (1779) :261-290
[13]   VORONOI REGIONS OF LATTICES, 2ND MOMENTS OF POLYTOPES, AND QUANTIZATION [J].
CONWAY, JH ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) :211-226
[14]   A CHARACTERISATION OF LEECHS LATTICE [J].
CONWAY, JH .
INVENTIONES MATHEMATICAE, 1969, 7 (02) :137-&
[15]  
CONWAY JH, J NUMBER THEORY
[16]  
CONWAY JH, 1977, TOPICS GROUP THEORY, P62
[17]  
Coxeter H.S.M., 1973, REGULAR POLYTOPES
[18]   AN EXTREME DUODENARY FORM [J].
COXETER, HSM ;
TODD, JA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (03) :384-392
[19]  
COXETER HSM, 1947, MATH REV, V8, P137
[20]   NEW COMBINATORIAL APPROACH TO M24 [J].
CURTIS, RT .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :25-42