THE METHOD OF QUASI-DECOUPLING FOR DISCONTINUOUS SOLUTIONS TO CONSERVATION-LAWS

被引:27
作者
CHEN, GQ
机构
[1] Department of Mathematics, The University of Chicago, Chicago, 60637, Illinois
关键词
D O I
10.1007/BF00375416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:131 / 185
页数:55
相关论文
共 59 条
[2]   ROTATIONALLY INVARIANT HYPERBOLIC WAVES [J].
BRIO, M ;
HUNTER, JK .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :1037-1053
[3]   HYPERBOLIC SYSTEMS OF CONSERVATION-LAWS WITH A SYMMETRY [J].
CHEN, GQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1461-1487
[4]  
CHEN GQ, 1990, MSRI0052791 MATH SCI
[5]  
CHEN GQ, 1991, COMMUN PUR APPL MATH, V44, P121
[6]   THERMODYNAMIC RESTRICTIONS ON CONSTITUTIVE EQUATIONS OF ELECTROMAGNETIC THEORY [J].
COLEMAN, BD ;
DILL, EH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1971, 22 (04) :691-&
[7]   ADMISSIBILITY CRITERIA FOR HYPERBOLIC CONSERVATION-LAWS [J].
CONLON, JG ;
LIU, TP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :641-652
[8]  
Dafermos C. M., 1983, NATO ASI SER C-MATH, V111, P25
[10]   GENERALIZED CHARACTERISTICS UNIQUENESS AND REGULARITY OF SOLUTIONS IN A HYPERBOLIC SYSTEM OF CONSERVATION-LAWS [J].
DAFERMOS, CM ;
GENG, X .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :231-269