ROTATIONALLY INVARIANT HYPERBOLIC WAVES

被引:20
作者
BRIO, M [1 ]
HUNTER, JK [1 ]
机构
[1] UNIV CALIF DAVIS,DAVIS,CA 95616
关键词
D O I
10.1002/cpa.3160430806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use weakly nonlinear asymptotics to derive a canonical asymptotic equation for rotationally invariant hyperbolic waves. The equation can include weak dissipative, dispersive, or diffractive effects. We give applications to equations from magnetohydrodynamics, elasticity, and viscoelasticity.
引用
收藏
页码:1037 / 1053
页数:17
相关论文
共 38 条
[1]   NON-LINEAR ASYMMETRIC SELF-PHASE MODULATION AND SELF-STEEPENING OF PULSES IN LONG OPTICAL-WAVEGUIDES [J].
ANDERSON, D ;
LISAK, M .
PHYSICAL REVIEW A, 1983, 27 (03) :1393-1398
[2]   TRAVELING WAVES IN NONLINEARLY VISCOELASTIC MEDIA AND SHOCK STRUCTURE IN ELASTIC MEDIA [J].
ANTMAN, SS ;
MALEKMADANI, R .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (01) :77-93
[3]   AN UPWIND DIFFERENCING SCHEME FOR THE EQUATIONS OF IDEAL MAGNETOHYDRODYNAMICS [J].
BRIO, M ;
WU, CC .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 75 (02) :400-422
[4]   PROPAGATION OF WEAKLY NONLINEAR MAGNETOACOUSTIC WAVES [J].
BRIO, M .
WAVE MOTION, 1987, 9 (05) :455-458
[5]   COUPLED TRANSVERSE LONGITUDINAL ENVELOPE MODES IN AN ATOMIC CHAIN [J].
CADET, S .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (30) :L803-L811
[6]   NONLINEAR EVOLUTION OF PARALLEL-PROPAGATING HYDROMAGNETIC-WAVES [J].
COHEN, RH ;
KULSRUD, RM .
PHYSICS OF FLUIDS, 1974, 17 (12) :2215-2225
[7]  
Cole J., 1986, TRANSONIC AERODYNAMI
[8]  
FREISTUHLER H, IN PRESS ARCH RAT ME
[9]  
FREISTUHLER H, 1989, INSTABILITY VANISHIN
[10]  
FREISTUHLER H, 1989, SOLUTION RIEMANN PRO