ROTATIONALLY INVARIANT HYPERBOLIC WAVES

被引:20
作者
BRIO, M [1 ]
HUNTER, JK [1 ]
机构
[1] UNIV CALIF DAVIS,DAVIS,CA 95616
关键词
D O I
10.1002/cpa.3160430806
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use weakly nonlinear asymptotics to derive a canonical asymptotic equation for rotationally invariant hyperbolic waves. The equation can include weak dissipative, dispersive, or diffractive effects. We give applications to equations from magnetohydrodynamics, elasticity, and viscoelasticity.
引用
收藏
页码:1037 / 1053
页数:17
相关论文
共 38 条
[21]  
Landau L. D., 1976, FLUID MECH-SOV RES, V1
[22]   NONLINEAR-WAVE MOTION GOVERNED BY THE MODIFIED BURGERS-EQUATION [J].
LEEBAPTY, IP ;
CRIGHTON, DG .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1987, 323 (1570) :173-209
[24]   ALFVEN SOLITONS [J].
MJOLHUS, E ;
WYLLER, J .
PHYSICA SCRIPTA, 1986, 33 (05) :442-451
[25]   NONLINEAR FILAMENTATION OF LOWER-HYBRID CONES [J].
MORALES, GJ ;
LEE, YC .
PHYSICAL REVIEW LETTERS, 1975, 35 (14) :930-933
[26]  
REDEKOPP LG, 1980, STUD APPL MATH, V63, P185
[27]   PARALLEL PROPAGATION OF NONLINEAR LOW-FREQUENCY WAVES IN HIGH-BETA PLASMA [J].
ROGISTER, A .
PHYSICS OF FLUIDS, 1971, 14 (12) :2733-+
[28]   QUASI-CONTINUOUS SPATIAL MOTION OF A MASS SPRING CHAIN [J].
ROSENAU, P .
PHYSICA D, 1987, 27 (1-2) :224-234
[29]   A NUMERICAL STUDY OF NONLINEAR ALFVEN WAVES AND SOLITONS [J].
SPANGLER, SR ;
SHEERIN, JP ;
PAYNE, GL .
PHYSICS OF FLUIDS, 1985, 28 (01) :104-109
[30]   WAVE CURVES FOR THE RIEMANN PROBLEM OF PLANE-WAVES IN ISOTROPIC ELASTIC SOLIDS [J].
TANG, ZJ ;
TING, TCT .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1987, 25 (11-12) :1343-1381