BOUNDARY S-MATRIX OF THE O(N)-SYMMETRICAL NONLINEAR SIGMA-MODEL

被引:25
作者
GHOSHAL, S
机构
[1] Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855-0849
关键词
D O I
10.1016/0370-2693(94)90701-3
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We conjecture that the O(N)-symmetric non-linear sigma model (with N greater-than-or-equal-to 3) in the semi-infinite (1 + 1)-dimensional space is ''integrable'' with respect to the ''free'' and the ''fixed'' boundary conditions. We then derive, for both cases, the boundary S-matrix for the reflection of massive particles of this model off the boundary at x = 0.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 16 条
[1]   FACTORIZING PARTICLES ON A HALF-LINE AND ROOT SYSTEMS [J].
CHEREDNIK, IV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 61 (01) :977-983
[2]   BOUNDARY K-MATRICES FOR THE 6 VERTEX AND THE N(2N-1)AN-1 VERTEX MODELS [J].
DEVEGA, HJ ;
RUIZ, AG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (12) :L519-L524
[3]  
FRING A, HEPTH9309142
[4]  
FRING A, USPIFQSCTH9306 SAO P
[5]  
FRING A, USPIFQSCTH9312 SAO P
[6]  
GHOSHAL S, 1994, IN PRESS INT J MED A
[7]  
GHOSHAL S, HEPTH9310188
[8]  
GHOSHAL S, RU9351 RUTG PREPR
[9]   UNIQUENESS OF A PURELY ELASTIC S-MATRIX IN (1+1) DIMENSIONS [J].
KAROWSKI, M ;
THUN, HJ ;
TRUONG, TT ;
WEISZ, PH .
PHYSICS LETTERS B, 1977, 67 (03) :321-322
[10]   INTEGRABILITY OF OPEN SPIN CHAINS WITH QUANTUM ALGEBRA SYMMETRY [J].
MEZINCESCU, L ;
NEPOMECHIE, RI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (29) :5231-5248