Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification

被引:94
作者
Amarsaikhan, D. [1 ]
Blotevogel, H. H. [2 ]
van Genderen, J. L. [3 ]
Ganzorig, M. [1 ]
Gantuya, R. [1 ]
Nergui, B. [1 ]
机构
[1] Mongolian Acad Sci, Inst Informat & RS, Ulaanbaatar, Mongolia
[2] Dortmund Univ Technol, Inst Spatial Planning, Fac Spatial Planning, Dortmund, Germany
[3] Int Inst Geoinformat Sci & Earth Observat ITC, Enschede, Netherlands
关键词
data fusion; refined Bayesian classification; multi-source; urban; feature derivation;
D O I
10.1080/19479830903562041
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The two objectives of this study are to compare the performances of different data fusion techniques for the enhancement of urban features and subsequently to improve urban land cover types classification using a refined Bayesian classification. For the data fusion, wavelet-based fusion, Brovey transform, Elhers fusion and principal component analysis are used and the results are compared. The refined Bayesian classification uses spatial thresholds defined from local knowledge and different features obtained through a feature derivation process. The result of the refined classification is compared with the results of a standard method and it demonstrates a higher accuracy. Overall, the research indicates that multi-source information can significantly improves the interpretation and classification of land cover types and the refined Bayesian classification is a powerful tool to increase the classification accuracy.
引用
收藏
页码:83 / 97
页数:15
相关论文
共 33 条
[1]  
ABIDI M, 1992, DATA FUSION ROBOTICS
[2]   The integrated use of optical and InSAR data for urban land-cover mapping [J].
Amarsaikhan, D. ;
Ganzorig, M. ;
Ache, P. ;
Blotevogel, H. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (06) :1161-1171
[3]   Data fusion and multisource image classification [J].
Amarsaikhan, D ;
Douglas, T .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (17) :3529-3539
[4]  
Amarsaikhan D., 2009, Geocarto International, V24, P257, DOI 10.1080/10106040802556173
[5]  
Amarsaikhan D., 1997, SCI PAPERS INFO CTR, P71
[6]  
AMARSAIKHAN D., 2004, ASIAN J GEOINFORMATI, V4, P27
[7]  
Amarsaikhan D., 2004, J REMOTE SENSING SOC, V24, P133
[8]   Feature extraction for multisource data classification with artificial neural networks [J].
Benediktsson, JA ;
Sveinsson, JR .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 1997, 18 (04) :727-740
[9]  
EHLERS M, 2004, P SOC PHOTO-OPT INS, P93
[10]  
Ehlers M., 2008, CD ROM P ISPRS C, P1