The integrity of ceramic/metal joints is investigated under mechanically applied cyclic stresses using double-cantilever-beam, and compact-tension, sandwich test specimens. Specifically, fatigue-crack propagation rates for interfacial cracks are characterized over a range of velocities from 10(-9) to 10(-4) m/s for glass/copper and alumina/aluminum-alloy interfaces tested in moist air. Compared to corresponding (stress-corrosion) results under sustained loading, it is found that true interfacial cracks in glass-copper joints are significantly accelerated under cyclic loads. In addition, crack extension force (G) thresholds for interfacial crack growth under cyclic loads are some 46% lower than under sustained loads and are typically over six times lower than the interface toughness (G(c)). For the alumina/aluminum-alloy system, conversely, fracture never occurs in the interface; under monotonic loading cracking progresses near the interface in the ceramic layer whereas under cyclic loading failure may occur either in the ceramic or in the metal. Based on a comparison with fatigue-crack growth data in bulk alumina and bulk aluminum alloys, it is found that near interfacial crack-growth rates in the metal are much lower than those of the bulk ceramic and show a far higher dependency on the range of G than behavior in the bulk metal.