EXISTENCE AND UNIQUENESS OF A SHARP TRAVELING-WAVE IN DEGENERATE NONLINEAR DIFFUSION FISHER-KPP EQUATIONS

被引:81
作者
SANCHEZGARDUNO, F [1 ]
MAINI, PK [1 ]
机构
[1] NATL AUTONOMOUS UNIV MEXICO,FAC CIENCIAS,DEPT MATEMAT,MEXICO CITY 04510,DF,MEXICO
关键词
TRAVELING WAVES; NONLINEAR DIFFUSION EQUATIONS; SHARP SOLUTIONS; WAVESPEED; DEGENERATE DIFFUSION;
D O I
10.1007/BF00160178
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper we use a dynamical systems approach to prove the existence of a unique critical value c* of the speed c for which the degenerate density-dependent diffusion equation u(t)=[D(u)u(x)](x)+g(u) has: 1. no travelling wave solutions for 0<c<c*, 2. a travelling wave solution u(x,t)= phi(x-c*t) of sharp type satisfying phi(-infinity)=1, phi(tau)=0 For All tau greater than or equal to tau*; phi'(tau*(-))=-c*/D'(0), phi'(tau*(+))=0 and 3. a continuum of travelling wave solutions of monotone decreasing front type for each c>c*. These fronts satisfy the boundary conditions phi(-infinity)=1, phi'(-infinity)=phi(+infinity)=phi'(+infinity)=0. We illustrate our analytical results with some numerical solutions.
引用
收藏
页码:163 / 192
页数:30
相关论文
共 31 条
[1]  
Andronov AA, 1972, THEORY DYNAMICAL SYS
[2]  
Arnold V. I., 1980, ORDINARY DIFFERENTIA
[3]  
ARONSON DG, 1985, LECTURE NOTES BIOMAT, V57
[4]  
ARONSONDG, 1980, DYNAMICS MODELLING R
[5]  
Arrowsmith D. K., 1990, INTRO DYNAMICAL SYST
[6]  
Britton, 1986, REACTION DIFFUSION E
[7]   POPULATION CONTROL IN ARCTIC GROUND SQUIRRELS [J].
CARL, EA .
ECOLOGY, 1971, 52 (03) :395-&
[8]  
Carr J., 1981, APPL CTR MANIFOLD TH
[9]   TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION [J].
DEPABLO, A ;
VAZQUEZ, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :19-61
[10]   RELATIONS BETWEEN TRAVELING WAVE SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ENGLER, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (02) :297-302