INTEGRABILITY AND THE MOTION OF CURVES

被引:171
作者
NAKAYAMA, K [1 ]
SEGUR, H [1 ]
WADATI, M [1 ]
机构
[1] UNIV COLORADO,PROGRAM APPL MATH,BOULDER,CO 80309
关键词
D O I
10.1103/PhysRevLett.69.2603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently discovered connections between integrable evolution equations and the motion of curves are based on the following fact: The Serret-Frenet equations are equivalent to the Ablowitz-Kaup-Newell-Segur (AKNS) scattering problem at zero eigenvalue. This equivalence identifies those evolution equations, integrable or not, that can describe the motion of curves.
引用
收藏
页码:2603 / 2606
页数:4
相关论文
共 13 条
[1]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[2]   GEOMETRICAL MODELS OF INTERFACE EVOLUTION [J].
BROWER, RC ;
KESSLER, DA ;
KOPLIK, J ;
LEVINE, H .
PHYSICAL REVIEW A, 1984, 29 (03) :1335-1342
[3]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[4]  
DARBOUX G, 1915, LECONS THEORIE GEN S, V1, P22
[5]  
Eisenhart L. P, 1909, TREATISE DIFFERENTIA
[6]   A STABLE MANIFOLD THEOREM FOR THE CURVE SHORTENING EQUATION [J].
EPSTEIN, CL ;
WEINSTEIN, MI .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (01) :119-139
[7]   THE KORTEWEG-DEVRIES HIERARCHY AS DYNAMICS OF CLOSED CURVES IN THE PLANE [J].
GOLDSTEIN, RE ;
PETRICH, DM .
PHYSICAL REVIEW LETTERS, 1991, 67 (23) :3203-3206
[8]   SOLITON ON A VORTEX FILAMENT [J].
HASIMOTO, H .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB8) :477-&
[9]   A LOOP SOLITON PROPAGATING ALONG A STRETCHED ROPE [J].
KONNO, K ;
ICHIKAWA, YH ;
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (03) :1025-1026
[10]  
LAMB GL, 1977, J MATH PHYS, V18, P1654, DOI 10.1063/1.523453