INTEGRABILITY AND THE MOTION OF CURVES

被引:171
作者
NAKAYAMA, K [1 ]
SEGUR, H [1 ]
WADATI, M [1 ]
机构
[1] UNIV COLORADO,PROGRAM APPL MATH,BOULDER,CO 80309
关键词
D O I
10.1103/PhysRevLett.69.2603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently discovered connections between integrable evolution equations and the motion of curves are based on the following fact: The Serret-Frenet equations are equivalent to the Ablowitz-Kaup-Newell-Segur (AKNS) scattering problem at zero eigenvalue. This equivalence identifies those evolution equations, integrable or not, that can describe the motion of curves.
引用
收藏
页码:2603 / 2606
页数:4
相关论文
共 13 条
[11]  
LOVE AEH, 1944, TREATISE MATH THEORY, P262
[12]  
SETHIAN JA, 1990, J DIFFER GEOM, V31, P131
[13]   MODIFIED KORTEWEG-DEVRIES EQUATION [J].
WADATI, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1973, 34 (05) :1289-1296