STATISTICAL PROPERTIES OF SPECTRA OF PSEUDOINTEGRABLE SYSTEMS

被引:35
作者
SHUDO, A
SHIMIZU, Y
SEBA, P
STEIN, J
STOCKMANN, HJ
ZYCZKOWSKI, K
机构
[1] ACAD SCI CZECH REPUBL, INST NUCL PHYS, PRAGUE, CZECH REPUBLIC
[2] UNIWERSYETET JAGIELLONSKI, INST FIZ, PL-30059 KRAKOW, POLAND
[3] TOKYO INST TECHNOL, DEPT APPL PHYS, MEGURO KU, TOKYO 152, JAPAN
[4] UNIV MARBURG, FACHBEREICH PHYS, D-35032 MARBURG, GERMANY
关键词
D O I
10.1103/PhysRevE.49.3748
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the spectral properties of various quantum pseudointegrable billiards (rhombus, gnomon, deltoid) and link them to the genus of the invariant surface of the corresponding classical model. Numerical investigations of the quantum billiards are completed by an experimental study of microwave resonators. Absorption spectra of microwaves in ''L-shaped'' resonators are measured and the distributions of eigenfrequencies are investigated.
引用
收藏
页码:3748 / 3756
页数:9
相关论文
共 66 条
[21]   A THEOREM ON ERGODICITY OF 2-DIMENSIONAL HYPERBOLIC BILLIARDS [J].
BUNIMOVICH, LA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (03) :599-621
[22]   ENERGY-LEVEL STATISTICS OF INTEGRABLE QUANTUM-SYSTEMS [J].
CASATI, G ;
CHIRIKOV, BV ;
GUARNERI, I .
PHYSICAL REVIEW LETTERS, 1985, 54 (13) :1350-1353
[23]   SCALING PROPERTIES OF THE EIGENVALUE SPACING DISTRIBUTION FOR BAND RANDOM MATRICES [J].
CASATI, G ;
IZRAILEV, F ;
MOLINARI, L .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4755-4762
[24]   ABSENCE OF SCALING IN ADDITIVE RANDOM MATRICES [J].
CHEON, T .
PHYSICAL REVIEW A, 1990, 42 (10) :6227-6229
[25]   QUANTUM LEVEL STATISTICS OF PSEUDOINTEGRABLE BILLIARDS [J].
CHEON, T ;
COHEN, TD .
PHYSICAL REVIEW LETTERS, 1989, 62 (24) :2769-2772
[26]   SIGNATURE OF CHAOS IN A QUANTUM PSEUDOINTEGRABLE BILLIARD [J].
CHEON, T ;
MIZUSAKI, T ;
SHIGEHARA, T ;
YOSHINAGA, N .
PHYSICAL REVIEW A, 1991, 44 (02) :R809-R812
[27]   PERIODIC-ORBIT QUANTIZATION OF CHAOTIC SYSTEMS [J].
CVITANOVIC, P ;
ECKHARDT, B .
PHYSICAL REVIEW LETTERS, 1989, 63 (08) :823-826
[28]   ANALYTICALLY SOLVABLE DYNAMICAL-SYSTEMS WHICH ARE NOT INTEGRABLE [J].
ECKHARDT, B ;
FORD, J ;
VIVALDI, F .
PHYSICA D, 1984, 13 (03) :339-356
[29]  
Froman N., 1965, CONTRIBUTIONS THEORY, V1st
[30]   DISTRIBUTION OF EIGENMODES IN A SUPERCONDUCTING STADIUM BILLIARD WITH CHAOTIC DYNAMICS [J].
GRAF, HD ;
HARNEY, HL ;
LENGELER, H ;
LEWENKOPF, CH ;
RANGACHARYULU, C ;
RICHTER, A ;
SCHARDT, P ;
WEIDENMULLER, HA .
PHYSICAL REVIEW LETTERS, 1992, 69 (09) :1296-1299