TIME-DEPENDENT LAGRANGIAN SYSTEMS - A GEOMETRIC APPROACH TO THE THEORY OF SYSTEMS WITH CONSTRAINTS

被引:12
作者
RANADA, MF
机构
[1] Departamento de Física Teórica, Facultad de Ciencias, Universidad de Zaragoza
关键词
D O I
10.1063/1.530664
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A geometric approach to the theory of time-dependent regular Lagrangian systems with constraints is presented using the framework of the exact contact manifold (TQ X R, THETA(L)). The main subject of the article concerns the properties of the time-dependent nonholonomic constraints and the geometric approach to the method of the Lagrange multipliers. It is shown that every constraint determines a contact one-form, a vertical vector field, and a nonvertical vector field. The explicit form of the vector field representing the constrained dynamics is obtained and, finally, the properties of all these one-forms and vector fields are discussed.
引用
收藏
页码:748 / 758
页数:11
相关论文
共 40 条
[1]  
ABRAHAM R, 1978, F MECHANICS
[2]  
Cantrijn F., 1986, Journal of Geometry and Physics, V3, P353, DOI 10.1016/0393-0440(86)90014-8
[3]   ON CONSTRAINED MECHANICAL SYSTEMS - DALEMBERT AND GAUSS PRINCIPLES [J].
CARDIN, F ;
ZANZOTTO, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) :1473-1479
[4]   POISSON MAPS AND CANONOID TRANSFORMATIONS FOR TIME-DEPENDENT HAMILTONIAN-SYSTEMS [J].
CARINENA, JF ;
RANADA, MF .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2258-2266
[5]   LAGRANGIAN SYSTEMS WITH CONSTRAINTS - A GEOMETRIC APPROACH TO THE METHOD OF LAGRANGE MULTIPLIERS [J].
CARINENA, JF ;
RANADA, MF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (06) :1335-1351
[6]   SYMMETRY THEORY AND LAGRANGIAN INVERSE PROBLEM FOR TIME-DEPENDENT 2ND-ORDER DIFFERENTIAL-EQUATIONS [J].
CARINENA, JF ;
MARTINEZ, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14) :2659-2665
[7]   A GEOMETRIC APPROACH TO NOETHER 2ND THEOREM IN TIME-DEPENDENT LAGRANGIAN MECHANICS [J].
CARINENA, JF ;
FERNANDEZNUNEZ, J ;
MARTINEZ, E .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 23 (01) :51-63
[8]   THEORY OF SINGULAR LAGRANGIANS [J].
CARINENA, JF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (09) :641-679
[9]   A GEOMETRICAL VERSION OF THE HELMHOLTZ CONDITIONS IN TIME-DEPENDENT LAGRANGIAN DYNAMICS [J].
CRAMPIN, M ;
PRINCE, GE ;
THOMPSON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1437-1447
[10]   TANGENT BUNDLE GEOMETRY FOR LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (16) :3755-3772