CHAOTIC SCATTERING AND DIFFUSION IN THE LORENTZ GAS

被引:91
作者
GASPARD, P
BARAS, F
机构
[1] Centre for Nonlinear Phenomena and Complex Systems, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Camp. Pl., C. P. 231, Blvd. Triomphe
关键词
D O I
10.1103/PhysRevE.51.5332
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A chaotic-scattering theory of diffusion in the Lorentz gas is presented. The scattering process is considered on disk scatterers of increasing sizes. In this way, chaotic and fractal properties of the scattering process are related to diffusion. A formula is obtained that gives the diffusion coefficient in terms of the Lyapunov exponent and the Hausdorff codimension of the fractal repeller of orbits trapped in the scatterer. Numerical results are presented that support our theoretical results. © 1995 The American Physical Society.
引用
收藏
页码:5332 / 5352
页数:21
相关论文
共 58 条
[41]  
Machta J., Zwanzig R., Phys. Rev. Lett., 50, (1983)
[42]  
Machta J., Zwanzig R., J. Stat. Phys., 32, (1983)
[43]  
Kadanoff L.P., Tang C., Escape from strange repellers, Proceedings of the National Academy of Sciences, 81, (1984)
[44]  
Chaos, 3, (1993)
[45]  
Bauer L., Reiss E.L., SIAM J. Appl. Math., 35, (1978)
[46]  
Hasley T.C., Jensen M.H., Kadanoff L.P., Procaccia I., Shraiman B.I., Phys. Rev. A, 33, (1986)
[47]  
Young L.S., Ergodic Theor. Dyn. Syst., 2, (1982)
[48]  
McDonald S.W., Grebogi C., Ott E., Yorke J.A., Physica D, 17, (1985)
[49]  
Ott E., Chaos in Dynamical Systems, (1993)
[50]  
Pollicott M., Invent. Math., 81, (1985)