MONTE-CARLO METHODS FOR THE NUCLEAR SHELL-MODEL

被引:111
作者
JOHNSON, CW
KOONIN, SE
LANG, GH
ORMAND, WE
机构
[1] W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena
关键词
D O I
10.1103/PhysRevLett.69.3157
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present novel Monte Carlo methods for treating the interacting shell model that allow exact calculations much larger than those heretofore possible. The two-body interaction is linearized by an auxiliary field; Monte Carlo evaluation of the resulting functional integral gives ground-state or thermal expectation values of few-body operators. The "sign problem" generic to quantum Monte Carlo calculations is absent in a number of cases. We discuss the favorable scaling of these methods with nucleon number and basis size and their suitability to parallel computation.
引用
收藏
页码:3157 / 3160
页数:4
相关论文
共 18 条
[11]   NUCLEAR-LEVEL DENSITIES IN THE STATIC-PATH APPROXIMATION [J].
LAURITZEN, B ;
ARVE, P ;
BERTSCH, GF .
PHYSICAL REVIEW LETTERS, 1988, 61 (25) :2835-2838
[12]  
LAWSON RD, 1980, THEORY NUCLEAR SHELL
[13]   NUCLEAR-LEVEL DENSITIES INCLUDING THERMAL AND QUANTAL FLUCTUATIONS [J].
PUDDU, G ;
BORTIGNON, PF ;
BROGLIA, RA .
PHYSICAL REVIEW C, 1990, 42 (05) :R1830-R1833
[14]   THE RPA-SPA APPROXIMATION TO LEVEL DENSITIES [J].
PUDDU, G ;
BORTIGNON, PF ;
BROGLIA, RA .
ANNALS OF PHYSICS, 1991, 206 (02) :409-439
[15]  
RAE WDM, 524 MICH STAT U CYCL
[16]   AUXILIARY FIELD MONTE-CARLO FOR QUANTUM MANY-BODY GROUND-STATES [J].
SUGIYAMA, G ;
KOONIN, SE .
ANNALS OF PHYSICS, 1986, 168 (01) :1-26
[17]   NUMERICAL STUDY OF THE TWO-DIMENSIONAL HUBBARD-MODEL [J].
WHITE, SR ;
SCALAPINO, DJ ;
SUGAR, RL ;
LOH, EY ;
GUBERNATIS, JE ;
SCALETTAR, RT .
PHYSICAL REVIEW B, 1989, 40 (01) :506-516
[18]  
Wildenthal B. H., 1984, Progress in Particle and Nuclear Physics, V11, P5, DOI 10.1016/0146-6410(84)90011-5