DEFICIENCY OF P53 ACCELERATES MAMMARY TUMORIGENESIS IN WNT-1 TRANSGENIC MICE AND PROMOTES CHROMOSOMAL INSTABILITY

被引:245
作者
DONEHOWER, LA
GODLEY, LA
ALDAZ, CM
PYLE, R
SHI, YP
PINKEL, D
GRAY, T
BRADLEY, A
MEDINA, D
VARMUS, HE
机构
[1] NCI,VARMUS LAB,BETHESDA,MD 20892
[2] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM & BIOPHYS,SAN FRANCISCO,CA 94143
[3] UNIV TEXAS,MD ANDERSON CANCER CTR,DEPT CARCINOGENESIS,SMITHVILLE,TX 78957
[4] UNIV CALIF SAN FRANCISCO,DEPT LAB MED,DIV MOLEC CYTOMETRY,SAN FRANCISCO,CA 94143
[5] BAYLOR COLL MED,HOWARD HUGHES MED INST,HOUSTON,TX 77030
[6] BAYLOR COLL MED,INST MOLEC GENET,HOUSTON,TX 77030
[7] BAYLOR COLL MED,DEPT CELL BIOL,HOUSTON,TX 77030
[8] NIH,OFF DIRECTOR,BETHESDA,MD 20892
[9] UNIV CALIF SAN FRANCISCO,DEPT MICROBIOL & IMMUNOL,SAN FRANCISCO,CA 94143
关键词
P53; WNT-1; MAMMARY TUMORS; GENOMIC INSTABILITY; MOUSE; TUMOR MODEL;
D O I
10.1101/gad.9.7.882
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
By crossing mice that carry a null allele of p53 with transgenic mice that develop mammary adenocarcinomas under the influence of a Wnt-1 transgene, we have studied the consequences of p53 deficiency in mammary gland neoplasia. In Wnt-1 transgenic mice homozygous for the p53 null allele, tumors appear at an earlier age than in animals heterozygous or wild-type at the p53 locus. About half of the tumors arising in p53 heterozygotes exhibit loss of the normal p53 allele, implying selection for p53-deficient cells. Mammary tumors lacking p53 display less fibrotic histopathology and increased genomic instability with aneuploidy, amplifications, and deletions, as detected by karyotype analysis and comparative genomic hybridization. In one tumor, the amplified region of chromosome 7 had an ectopically expressed int-2/FGF3 proto-oncogene, a gene known to cooperate with Wnt-1 in the production of mammary tumors. These findings favor a model in which p53 deficiency relaxes normal restraints on chromosomal number and organization during tumorigenesis.
引用
收藏
页码:882 / 895
页数:14
相关论文
共 59 条
  • [1] Aldaz C.M., Chen A., Gollahon L.S., Russo J., Zappler K., Nonrandom abnormalities involving chromosome 1 and Harvey-ras-1 alleles in rat mammary tumor progression, Cancer Res., 52, pp. 4791-4798, (1992)
  • [2] Arnold A., Kim H.G., Gaz R.D., Eddy R.L., Fukushima Y., Byers M.G., Shows T.B., Kronenberg H.M., Molecular cloning and chromosomal mapping of DNA rearranged with parathyroid hormone gene in a parathyroid adenoma, J. Clin. Invest., 83, pp. 2034-2040, (1989)
  • [3] Bargmann C., Hung M.-C., Weinberg R.A., Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185, Cell, 45, pp. 649-657, (1986)
  • [4] Bischoff F.Z., Yim S.O., Pathak S., Grant G., Siciliano M.J., Giovanella B.C., Strong L.C., Tainsky M.A., Spontaneous immortalization of normal fibroblasts from patients with Li-Fraumeni cancer syndrome: Aneuploidy and immortalization, Cancer Res., 50, pp. 7979-7984, (1990)
  • [5] Callahan R., p53 mutations, another breast cancer prognostic factor, J. Natl. Cancer Inst., 84, pp. 826-827, (1992)
  • [6] Cardiff R.D., Muller W.J., Transgenic models of mammary tumorigenesis, Cancer Surv., 16, pp. 97-113, (1993)
  • [7] Christofori G., Hanahan D., Molecular dissection of multi-stage tumorigenesis in transgenic mice, Sem. Cancer Biol., 5, pp. 3-12, (1994)
  • [8] Clarke A.R., Purdie C.A., Harrison D.J., Morris R.G., Bird C.C., Hooper M.L., Wyllie A.H., Thymocyte apoptosis induced by p53-dependent and independent pathways, Nature, 352, pp. 849-852, (1993)
  • [9] Czosnek H.H., Bienz B., Givol D., Zakut-Houri R., Pravtcheva D.D., Ruddle F.H., Oren M., The gene and the pseudogene for mouse p53 cellular tumor antigen are located on different chromosomes, Mol. Cell. Biol., 4, pp. 1638-1640, (1984)
  • [10] Dameron K.M., Volpert O.V., Tainsky M.A., Bouck N., Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1, Science, 265, pp. 1582-1584, (1994)