DEFICIENCY OF P53 ACCELERATES MAMMARY TUMORIGENESIS IN WNT-1 TRANSGENIC MICE AND PROMOTES CHROMOSOMAL INSTABILITY

被引:245
作者
DONEHOWER, LA
GODLEY, LA
ALDAZ, CM
PYLE, R
SHI, YP
PINKEL, D
GRAY, T
BRADLEY, A
MEDINA, D
VARMUS, HE
机构
[1] NCI,VARMUS LAB,BETHESDA,MD 20892
[2] UNIV CALIF SAN FRANCISCO,DEPT BIOCHEM & BIOPHYS,SAN FRANCISCO,CA 94143
[3] UNIV TEXAS,MD ANDERSON CANCER CTR,DEPT CARCINOGENESIS,SMITHVILLE,TX 78957
[4] UNIV CALIF SAN FRANCISCO,DEPT LAB MED,DIV MOLEC CYTOMETRY,SAN FRANCISCO,CA 94143
[5] BAYLOR COLL MED,HOWARD HUGHES MED INST,HOUSTON,TX 77030
[6] BAYLOR COLL MED,INST MOLEC GENET,HOUSTON,TX 77030
[7] BAYLOR COLL MED,DEPT CELL BIOL,HOUSTON,TX 77030
[8] NIH,OFF DIRECTOR,BETHESDA,MD 20892
[9] UNIV CALIF SAN FRANCISCO,DEPT MICROBIOL & IMMUNOL,SAN FRANCISCO,CA 94143
关键词
P53; WNT-1; MAMMARY TUMORS; GENOMIC INSTABILITY; MOUSE; TUMOR MODEL;
D O I
10.1101/gad.9.7.882
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
By crossing mice that carry a null allele of p53 with transgenic mice that develop mammary adenocarcinomas under the influence of a Wnt-1 transgene, we have studied the consequences of p53 deficiency in mammary gland neoplasia. In Wnt-1 transgenic mice homozygous for the p53 null allele, tumors appear at an earlier age than in animals heterozygous or wild-type at the p53 locus. About half of the tumors arising in p53 heterozygotes exhibit loss of the normal p53 allele, implying selection for p53-deficient cells. Mammary tumors lacking p53 display less fibrotic histopathology and increased genomic instability with aneuploidy, amplifications, and deletions, as detected by karyotype analysis and comparative genomic hybridization. In one tumor, the amplified region of chromosome 7 had an ectopically expressed int-2/FGF3 proto-oncogene, a gene known to cooperate with Wnt-1 in the production of mammary tumors. These findings favor a model in which p53 deficiency relaxes normal restraints on chromosomal number and organization during tumorigenesis.
引用
收藏
页码:882 / 895
页数:14
相关论文
共 59 条
  • [21] Jacks T., Remington L., Williams B.O., Schmitt E.M., Halachmi S., Bronson R.T., Weinberg R.A., Tumor spectrum analysis in p53-mutant mice, Curr. Biol., 4, pp. 1-7, (1994)
  • [22] Kallioniemi A., Kallioniemi O.-P., Sudar D., Rutovitz D., Gray J.W., Waldman F., Pinkel D., Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors, Science, 258, pp. 818-821, (1992)
  • [23] Kandel J., Bossy-Wetzel E., Radvanyi F., Klagsbrun M., Folkman J., Hanahan D., Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma, Cell, 66, pp. 1095-1104, (1991)
  • [24] Kastan M.B., Onyekwere O., Sidransky D., Vogelstein B., Craig R.W., Participation of p53 protein in the cellular response to DNA damage, Cancer Res., 51, pp. 6304-6311, (1991)
  • [25] Kastan M.B., Zhan Q., El-Deiry W.S., Carrier F., Jacks T., Walsh W.V., Plunkett B.S., Vogelstein B., Fornace Jr. A.J., A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectiasia, Cell, 71, pp. 587-597, (1992)
  • [26] Kemp C., Donehower L.A., Bradley A., Balmain A., Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors, Cell, 74, pp. 813-822, (1993)
  • [27] Kern S.E., Pietenpol J.A., Thiagalingam S., Seymour A., Kinzler K.W., Vogelstein B., Oncogenic forms of p53 inhibit p53-regulated gene expression, Science, 256, pp. 827-830, (1992)
  • [28] Kwan H., Pecenka V., Tsukamoto A., Parslow T.G., Guzman R., Lin T.-P., Muller W.J., Lee F.S., Leder P., Varmus H.E., Transgenes expressing the Wnt-1 and int-2 protooncogenes cooperate during mammary carcinogenesis in doubly transgenic mice, Mol. Cell. Biol., 12, pp. 147-154, (1992)
  • [29] Lammie G.A., Fantl V., Smith R., Schuuring E., Brookes S., Michalides R., Dickson C., Arnold A., Peters G., D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1, Oncogene, 6, pp. 439-444, (1991)
  • [30] Land H., Parada L., Weinberg R.A., Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature, 304, pp. 596-602, (1983)