TRACE NORM CONVERGENCE OF EXPONENTIAL PRODUCT FORMULA

被引:11
作者
HIAI, F
机构
[1] Department of Mathematics, Ibaraki University, Ibaraki, 310, Mito
关键词
D O I
10.1007/BF00739803
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Let H and K be lower-bounded self-adjoint operators whose form sum is denoted by H + K. We show the norm inequality parallel-to e -(H + K) parallel-to less-than-or-equal-to parallel-to(e -rH/2e-rK(e)-rH/2)1/r parallel-to for r greater-than 0 and any symmetric norm parallel-to.parallel-to. When H + K is essentially self-adjoint and e-k is of trace class, we prove that (e-rH/2e-rK(e)-rH/2)1/r converges as r down 0 to e-(H+K) in the trace norm.
引用
收藏
页码:147 / 158
页数:12
相关论文
共 34 条
[2]   COMPARISON OF NORMS F(A)-F(B) AND F([A-B]) [J].
ANDO, T .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (03) :403-409
[3]  
ANDO T, 1994, LINEAR ALGEBRA APPL, V197, P113
[4]   ON AN INEQUALITY OF LIEB AND THIRRING [J].
ARAKI, H .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 19 (02) :167-170
[5]   GOLDEN-THOMPSON AND PEIERLS-BOGOLUBOV INEQUALITIES FOR A GENERAL NONNEUMANN ALGEBRA [J].
ARAKI, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 34 (03) :167-178
[6]  
Araki H., 1977, PUBL RES I MATH SCI, V13, P173
[7]  
Araki H., 1973, RIMS, V9, P165
[8]  
Araki H., 1976, PUBL RES I MATH SCI, V11, P809, DOI DOI 10.2977/PRIMS/1195191148
[9]  
Chernoff P. R., 1968, J FUNCT ANAL, V2, P238
[10]   RELATIVE HAMILTONIANS WHICH ARE NOT BOUNDED FROM ABOVE [J].
DONALD, MJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 91 (01) :143-173