THE 123 THEOREM AND ITS EXTENSIONS

被引:10
作者
ALON, N
YUSTER, R
机构
[1] Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv
关键词
D O I
10.1016/0097-3165(95)90071-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that for every b > a > 0 and for every two independent identically distributed real random variables X and Y, Prob[\X - Y\ less than or equal to b] < (2[b/a] - 1) Prob[\X - Y\ less than or equal to a]. This is tight for all admissible pairs a, b. Higher dimensional extensions are also considered. (C) 1995 Academic Press, Inc.
引用
收藏
页码:322 / 331
页数:10
相关论文
共 8 条
[1]  
Bateman P, 1951, AM MATH MONTHLY, V58, P306
[2]  
Conway J.H., 1988, SPHERE PACKINGS LATT
[3]  
KATONA G, 1969, MAT LAPOK, V20, P123
[4]  
KATONA GOH, 1985, ANN DISCRETE MATH, V28, P159
[5]  
LEECH J, 1956, MATH GAZ, V40, P22, DOI DOI 10.2307/3610264
[6]  
LEVENSHTEIN VI, 1979, SOV MATH DOKL, V20, P417
[7]   NEW BOUNDS ON THE NUMBER OF UNIT SPHERES THAT CAN TOUCH A UNIT SPHERE IN N-DIMENSIONS [J].
ODLYZKO, AM ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 26 (02) :210-214
[8]  
SIDORENKO AF, 1982, MATH USSR IZV+, V46, P503