The binding of ADPNP (5'-adenylyl beta,gamma-imidodiphosphate) to the 43-kDa N-terminal fragment of the DNA gyrase B protein is found to stabilize a dimer of the protein. Analysis of the kinetics of binding of ADPNP to the fragment suggests that protein dimers can contain 1 or 2 molecules of bound nucleotide. ATP, ADP, or coumarin drugs inhibit the binding of ADPNP. The rate of dissociation of ADPNP from the 43-kDa protein is found to be very slow and unaffected by the presence of other nucleotides. These data can be accommodated by a scheme in which the 43-kDa monomer forms a short-lived complex with ADPNP that can be converted into long-lived dimer complexes containing either 1 or 2 molecules of bound ADPNP; dimer formation with 2 bound ADPNPs is strongly favored. Coumarin drugs inhibit the binding of ADPNP to the 43-kDa fragment, with novobiocin binding to the protein with a stoichiometry of 1:1 and coumermycin binding with a stoichiometry of 0.5:1.