UNBOUNDED POINCARE DOMAINS

被引:18
作者
HURRISYRJANEN, R
机构
[1] UNIV JYVASKYLA, DEPT MATH, SF-40351 JYVASKYLA, FINLAND
[2] UNIV HAWAII, HONOLULU, HI 96822 USA
[3] UNIV TEXAS, AUSTIN, TX 78712 USA
关键词
D O I
10.5186/aasfm.1992.1725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that unbounded John domains D in R(n) satisfy the Poincare inequality [GRAPHICS] where q = np/(n - p), 1 less-than-or-equal-to p < n, c = c(p, q, D), and u is-an-element-of L(p)(D), and that in a certain sense John domains form the largest subclass of (np/(n - p), p)-Poincare domains.
引用
收藏
页码:409 / 423
页数:15
相关论文
共 25 条
[1]  
BOJARSKI B, 1988, LECT NOTES MATH, V1351, P52
[2]  
EVANS WD, 1987, P LOND MATH SOC, V54, P141
[3]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116
[4]   LIPSCHITZ CLASSES AND QUASI-CONFORMAL MAPPINGS [J].
GEHRING, FW ;
MARTIO, O .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :203-219
[5]   QUASIHYPERBOLIC GEODESICS IN JOHN DOMAINS [J].
GEHRING, FW ;
HAG, K ;
MARTIO, O .
MATHEMATICA SCANDINAVICA, 1989, 65 (01) :75-92
[6]   QUASI-CONFORMALLY HOMOGENEOUS DOMAINS [J].
GEHRING, FW ;
PALKA, BP .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 30 :172-199
[7]   THE WEIGHTED POINCARE INEQUALITIES [J].
HURRI, R .
MATHEMATICA SCANDINAVICA, 1990, 67 (01) :145-160
[8]  
Hurri R., 1988, ANN ACAD SCI FENN A1, V71, P1
[9]   HARDY-LITTLEWOOD INEQUALITY FOR QUASI-REGULAR-MAPPINGS IN CERTAIN DOMAINS IN RN [J].
IWANIEC, T ;
NOLDER, CA .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1985, 10 (01) :267-282
[10]  
Kufner A., 1985, WEIGHTED SOBOLEV SPA