UNBOUNDED POINCARE DOMAINS

被引:18
作者
HURRISYRJANEN, R
机构
[1] UNIV JYVASKYLA, DEPT MATH, SF-40351 JYVASKYLA, FINLAND
[2] UNIV HAWAII, HONOLULU, HI 96822 USA
[3] UNIV TEXAS, AUSTIN, TX 78712 USA
关键词
D O I
10.5186/aasfm.1992.1725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that unbounded John domains D in R(n) satisfy the Poincare inequality [GRAPHICS] where q = np/(n - p), 1 less-than-or-equal-to p < n, c = c(p, q, D), and u is-an-element-of L(p)(D), and that in a certain sense John domains form the largest subclass of (np/(n - p), p)-Poincare domains.
引用
收藏
页码:409 / 423
页数:15
相关论文
共 25 条
[21]  
[No title captured]
[22]  
[No title captured]
[23]  
[No title captured]
[24]  
[No title captured]
[25]  
[No title captured]