LOWER BOUND FOR ACCESSIBLE INFORMATION IN QUANTUM-MECHANICS

被引:103
作者
JOZSA, R
ROBB, D
WOOTTERS, WK
机构
[1] UNIV TEXAS, DEPT PHYS, AUSTIN, TX 78712 USA
[2] WILLIAMS COLL, DEPT PHYS, WILLIAMSTOWN, MA 01267 USA
[3] UNIV PLYMOUTH, DEPT MATH & STAT, PLYMOUTH PL4 8AA, DEVON, ENGLAND
关键词
D O I
10.1103/PhysRevA.49.668
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has long been known that the von Neumann entropy S is an upper bound on the information one can extract from a quantum system in an unknown pure state. In this paper we define the ''subentropy'' Q, which we prove to be a lower bound on this information. Moreover, just as the von Neumann entropy is the best upper bound that depends only on the density matrix, we show that Q is the best lower bound that depends only on the density matrix. Other parallels between S and Q are also demonstrated.
引用
收藏
页码:668 / 677
页数:10
相关论文
共 38 条
[1]  
ATKINSON KE, 1978, INTRO NUMERICAL ANAL, P107
[2]  
BENNETT CH, 1992, LECT NOTES COMPUT SC, V576, P351
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   QUANTUM CRYPTOGRAPHY WITHOUT BELL THEOREM [J].
BENNETT, CH ;
BRASSARD, G ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1992, 68 (05) :557-559
[5]  
BENNETT CH, 1984, DEC IEEE INT C COMP, P175
[6]  
Bernstein E., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P11, DOI 10.1145/167088.167097
[7]  
BERTHIAUME A, 1993, 7TH P ANN IEEE C STR, P132
[8]  
BEYER ET, 1955, MATH F QUANTUM MECHA
[9]  
BRASSARD G, 1991, LECT NOTES COMPUT SC, V537, P49
[10]   INFORMATION-THEORETIC BELL INEQUALITIES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1988, 61 (06) :662-665