LOWER BOUND FOR ACCESSIBLE INFORMATION IN QUANTUM-MECHANICS

被引:103
作者
JOZSA, R
ROBB, D
WOOTTERS, WK
机构
[1] UNIV TEXAS, DEPT PHYS, AUSTIN, TX 78712 USA
[2] WILLIAMS COLL, DEPT PHYS, WILLIAMSTOWN, MA 01267 USA
[3] UNIV PLYMOUTH, DEPT MATH & STAT, PLYMOUTH PL4 8AA, DEVON, ENGLAND
关键词
D O I
10.1103/PhysRevA.49.668
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has long been known that the von Neumann entropy S is an upper bound on the information one can extract from a quantum system in an unknown pure state. In this paper we define the ''subentropy'' Q, which we prove to be a lower bound on this information. Moreover, just as the von Neumann entropy is the best upper bound that depends only on the density matrix, we show that Q is the best lower bound that depends only on the density matrix. Other parallels between S and Q are also demonstrated.
引用
收藏
页码:668 / 677
页数:10
相关论文
共 38 条
[21]  
Kholevo A. S., 1973, Problems of Information Transmission, V9, P177
[22]  
Kholevo A. S., 1973, PROBL PEREDACHI INF, V9, P31
[23]  
LEVITIN LB, 1987, INFORMATION COMPLEXI
[24]   A POTENTIALLY REALIZABLE QUANTUM COMPUTER [J].
LLOYD, S .
SCIENCE, 1993, 261 (5128) :1569-1571
[25]   GENERALIZED ENTROPIC UNCERTAINTY RELATIONS [J].
MAASSEN, H ;
UFFINK, JBM .
PHYSICAL REVIEW LETTERS, 1988, 60 (12) :1103-1106
[26]   NEUMARK THEOREM AND QUANTUM INSEPARABILITY [J].
PERES, A .
FOUNDATIONS OF PHYSICS, 1990, 20 (12) :1441-1453
[27]  
PERES A, 1993, QUANTUM THEORY CONCE, pCH9
[28]   HYPERSENSITIVITY TO PERTURBATIONS IN THE QUANTUM BAKERS MAP [J].
SCHACK, R ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1993, 71 (04) :525-528
[29]  
SCHUMACHER B, IN PRESS PHYS REV A
[30]  
SCHUMACHER B, 1990, COMPLEXITY ENTROPY P