PLATE, APOLLONIUS, AND KLEIN - PLAYING WITH SPHERES

被引:5
作者
MANTICA, G
BULLETT, S
机构
[1] Dipartimento di Matematica, Univ. di Milano a Como, 22100 Como
[2] School of Mathematical Sciences, Queen Mary and Westfield College, University of London, London
来源
PHYSICA D | 1995年 / 86卷 / 1-2期
关键词
D O I
10.1016/0167-2789(95)00093-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe the group theoretical background and the numerical techniques which enable us to compute new families of Apollonian circle packings. We provide examples of these constructions and we motivate this research from the physical and the mathematical point of view.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 19 条
[2]  
Beardon A. F., 1983, GEOMETRY DISCRETE GR, V91
[3]   LIMIT POINTS OF KLEINIAN GROUPS AND FINITE SIDED FUNDAMENTAL POLYHEDRA [J].
BEARDON, AF ;
MASKIT, B .
ACTA MATHEMATICA, 1974, 132 (1-2) :1-12
[4]  
Berger M., 1987, GEOMETRY, V1
[5]  
Berger M., 1987, GEOMETRY, VII
[6]   GENERALIZED APOLLONIAN PACKINGS [J].
BESSIS, D ;
DEMKO, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 134 (02) :293-319
[7]   NEW CLASS OF INFINITE SPHERE PACKINGS [J].
BOYD, DW .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 50 (02) :383-398
[8]   EXPONENT OF AN OSCULATORY PACKING [J].
BOYD, DW .
CANADIAN JOURNAL OF MATHEMATICS, 1971, 23 (02) :355-&
[9]   GROUP-THEORY OF HYPERBOLIC CIRCLE PACKINGS [J].
BULLETT, S ;
MANTICA, G .
NONLINEARITY, 1992, 5 (05) :1085-1109
[10]  
COXETER HSM, 1981, INTRO GEOMETRY