GLUTAREDOXIN ACCELERATES GLUTATHIONE-DEPENDENT FOLDING OF REDUCED RIBONUCLEASE-A TOGETHER WITH PROTEIN DISULFIDE-ISOMERASE

被引:48
作者
LUNDSTROMLJUNG, J [1 ]
HOLMGREN, A [1 ]
机构
[1] KAROLINSKA INST,DEPT MED BIOCHEM & BIOPHYS,MED NOBEL INST BIOCHEM,S-17177 STOCKHOLM,SWEDEN
关键词
D O I
10.1074/jbc.270.14.7822
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glutaredoxin (Grx) contains a redox-active disulfide and catalyzed thiol-disulfide interchange reactions with specificity for GSH. The dithiol form of Grx reduces mixed disulfides involving GSH or protein disulfides. During oxidative refolding of 8 mu M reduced and denatured ribonuclease RNase-(SH)(8) in a redox buffer of 1 mM GSH and 0.2 mM GSSG to yield native RNase-(S-2)(4), a large number of GSH-mixed disulfide species are formed. A lag phase that precedes formation of folded active RNase at a steady-state rate was shortened or eliminated by the presence of a catalytic concentration (0.5 mu M) of Escherichia coli Grx together with protein disulfide-isomerase (PDI), its procaryotic equivalent E. coli DsbA, or the PDI analogue the E. coli thioredoxin mutant protein P34H. A mutant Grx in which one of the active site cysteine residues (Cys-11 and Cys-14) had been replaced by serine, C14S Grx, had similar effect compared with its wild-type counterpart. This demonstrated that Grx acted by a monothiol mechanism involving only Cys-11 and that RNase-S-SG-mixed disulfides were the substrates. Grx displayed synergistic activity together with PDI only in GSH/GSSG redox buffers with sufficiently low redox potential (E'(0) of -208 or -181 mV) to allow reduction of the active site of Grx. In refolding systems that do not depend on glutathione, like cystamine/cysteamine or in the presence of selenite (SeO32-), no synergistic activity of Grx was observed with PDI. We conclude that Grx acts by reducing mixed disulfides between GSH and RNase that are rate-limiting in enzyme-catalyzed refolding.
引用
收藏
页码:7822 / 7828
页数:7
相关论文
共 59 条
[1]  
AKIYAMA Y, 1992, J BIOL CHEM, V267, P22440
[2]  
AKIYAMA Y, 1993, J BIOL CHEM, V268, P8146
[3]  
BARBY NJ, 1994, BIOCHEMISTRY-US, V33, P7937
[4]   A PATHWAY FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
LEE, JO ;
JANDER, G ;
MARTIN, N ;
BELIN, D ;
BECKWITH, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (03) :1038-1042
[5]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[6]   MOLECULAR-CLONING AND COMPLETE AMINO-ACID-SEQUENCE OF FORM-I PHOSPHOINOSITIDE-SPECIFIC PHOSPHOLIPASE-C [J].
BENNETT, CF ;
BALCAREK, JM ;
VARRICHIO, A ;
CROOKE, ST .
NATURE, 1988, 334 (6179) :268-270
[7]  
BJORNSTEDT M, 1992, J BIOL CHEM, V267, P8030
[8]   DEFECTIVE CO-TRANSLATIONAL FORMATION OF DISULFIDE BONDS IN PROTEIN DISULFIDE-ISOMERASE-DEFICIENT MICROSOMES [J].
BULLEID, NJ ;
FREEDMAN, RB .
NATURE, 1988, 335 (6191) :649-651
[9]   THE NUCLEAR-MAGNETIC-RESONANCE SOLUTION STRUCTURE OF THE MIXED DISULFIDE BETWEEN ESCHERICHIA-COLI GLUTAREDOXIN(C14S) AND GLUTATHIONE [J].
BUSHWELLER, JH ;
BILLETER, M ;
HOLMGREN, A ;
WUTHRICH, K .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 235 (05) :1585-1597
[10]   STRUCTURAL AND FUNCTIONAL-CHARACTERIZATION OF THE MUTANT ESCHERICHIA-COLI GLUTAREDOXIN(C14-]S) AND ITS MIXED DISULFIDE WITH GLUTATHIONE [J].
BUSHWELLER, JH ;
ASLUND, F ;
WUTHRICH, K ;
HOLMGREN, A .
BIOCHEMISTRY, 1992, 31 (38) :9288-9293