ON THE GEODESIC CONNECTEDNESS OF LORENTZIAN MANIFOLDS

被引:16
作者
BENCI, V [1 ]
FORTUNATO, D [1 ]
MASIELLO, A [1 ]
机构
[1] UNIV BARI,DIPARTIMENTO MATEMAT,I-70125 BARI,ITALY
关键词
D O I
10.1007/BF02571935
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:73 / 93
页数:21
相关论文
共 13 条
[1]  
AVEZ A, 1963, ANN I FOURIER, V132, P105, DOI DOI 10.5802/AIF.144
[2]   PSEUDOCONVEXITY AND GEODESIC CONNECTEDNESS [J].
BEEM, JK ;
PARKER, PE .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :137-142
[3]   EXISTENCE OF GEODESICS FOR THE LORENTZ METRIC OF A STATIONARY GRAVITATIONAL-FIELD [J].
BENCI, V ;
FORTUNATO, D .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (01) :27-35
[4]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[5]  
BENCI V, 592 U BAR DIP MAT PR
[6]  
BENCI V, IN PRESS ADV MATH
[7]   DOMAIN OF DEPENDENCE [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1970, 11 (02) :437-&
[8]  
O'Neill B., 1983, SEMIRIEMANNIAN GEOME
[9]  
Palais R. S., 1963, TOPOLOGY, V2, P299
[10]  
PENROSE R, 1972, C BOARD MATH SCI, V7