ALGORITHMS FOR DRAWING GRAPHS - AN ANNOTATED-BIBLIOGRAPHY

被引:356
作者
DIBATTISTA, G
EADES, P
TAMASSIA, R
TOLLIS, IG
机构
[1] UNIV ROMA LA SAPIENZA, DIPARTIMENTO INFORMAT & SISTEMIST, I-00198 ROME, ITALY
[2] UNIV NEWCASTLE, DEPT COMP SCI, NEWCASTLE, NSW 2308, AUSTRALIA
[3] UNIV TEXAS, DEPT COMP SCI, RICHARDSON, TX 75083 USA
[4] BROWN UNIV, DEPT COMP SCI, PROVIDENCE, RI 02912 USA
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 1994年 / 4卷 / 05期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0925-7721(94)00014-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Several data presentation problems involve drawing graphs so that they are easy to read and understand. Examples include circuit schematics and software engineering diagrams. In this paper we present a bibliographic survey on algorithms whose goal is to produce aesthetically pleasing drawings of graphs. Research on this topic is spread over the broad spectrum of Computer Science. This bibliography constitutes an attempt to encompass both theoretical and application oriented papers from disparate areas.
引用
收藏
页码:235 / 282
页数:48
相关论文
共 303 条
  • [21] CHIBA N, 1979, P IEEE INT S CIRC SY, P649
  • [22] Chiba Norishige, 1984, PROGR GRAPH THEORY, V173, P153
  • [23] Cohen R. F., 1992, Proceedings of the Eighth Annual Symposium on Computational Geometry, P261, DOI 10.1145/142675.142728
  • [24] Crescenzi P., 1992, Computational Geometry: Theory and Applications, V2, P187, DOI 10.1016/0925-7721(92)90021-J
  • [25] DAO M, 1987, LECT NOTES COMPUT SC, V246, P58
  • [26] de Fraysseix H., 1982, ANN DISCRETE MATH, V13, P75
  • [27] HOW TO DRAW A PLANAR GRAPH ON A GRID
    DEFRAYSSEIX, H
    PACH, J
    POLLACK, R
    [J]. COMBINATORICA, 1990, 10 (01) : 41 - 51
  • [28] di Battista G., 1989, Proceedings of the Fifth Annual Symposium on Computational Geometry, P51, DOI 10.1145/73833.73839
  • [29] Di Battista G., 1990, Proceedings of the 1990 IEEE Workshop on Visual Languages (Cat. No.90TH0330-1), P60, DOI 10.1109/WVL.1990.128383
  • [30] Di Battista G., 1993, Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of Computing, P431, DOI 10.1145/167088.167207