A LINEAR ALGEBRAIC FRAMEWORK FOR DYNAMIC FEEDBACK LINEARIZATION

被引:91
作者
ARANDABRICAIRE, E [1 ]
MOOG, CH [1 ]
POMET, JB [1 ]
机构
[1] INRIA,F-06902 SOPHIA ANTIPOLIS,FRANCE
关键词
D O I
10.1109/9.362886
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To any accessible nonlinear system we associate a so-called infinitesimal Brunovsky form. This gives an algebraic criterion for strong accessibility as well as a generalization of Kronecker controllability indices. An output function which defines a right-invertible system without zero dynamics is shown to exist if and only if the basis of the Brunovsky form can be transformed into a system of exact differential forms. This is equivalent to the system being differentially flat and hence constitutes a necessary and sufficient condition for dynamic feedback linearizability.
引用
收藏
页码:127 / 132
页数:6
相关论文
共 29 条
[1]  
AMADABRICAIRE E, 1993, IN PRESS JUN EXT WOR
[2]  
AMADABRICAIRE E, 1993, 32ND P IEEE C DEC CO, P3441
[3]  
Bryant R. L., 1991, EXTERIOR DIFFERENTIA, V18
[4]   ON MINIMAL COMPENSATORS FOR DECOUPLING CONTROL [J].
CAO, L ;
ZHENG, YF .
SYSTEMS & CONTROL LETTERS, 1992, 18 (02) :121-128
[5]   SUFFICIENT CONDITIONS FOR DYNAMIC STATE FEEDBACK LINEARIZATION [J].
CHARLET, B ;
LEVINE, J ;
MARINO, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (01) :38-57
[6]  
Claude D., 1986, ALGEBR GEOM TOPOL, P181
[7]   RANK INVARIANTS OF NONLINEAR-SYSTEMS [J].
DIBENEDETTO, MD ;
GRIZZLE, JW ;
MOOG, CH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (03) :658-672
[8]  
FLIES M, IN PRESS INT J CONTR
[9]  
FLIES M, 1993, MAY INT GEOM C MOSC
[10]  
FLIESS M, 1993, CR ACAD SCI I-MATH, V317, P981