Teicoplanin, a lipoglycopeptide antibiotic, consists of five major components (A2-1 through A2-5), one hydrolysis component (A3-1), and four minor components (RS-1 through RS-4). All the major components contain an N-acyl-beta-D-glucosamine, but they differ in the lengths and branchings of their acyl-aliphatic chains. Previous studies with radiolabeled teicoplanin in rats and humans have shown that the drug is eliminated by the renal route and that metabolic transformation is very minor, about 5%. A possible metabolic transformation of teicoplanin into A3-1 was also suggested. In the present study in humans, two metabolites (metabolites 1 and 2; 2 to 3% of total teicoplanin) were isolated after intravenous administration of radiolabeled teicoplanin. After purification, their structures were determined by fast atom bombardment mass spectroscopy and H-1 nuclear magnetic resonance spectroscopy on the basis of the well-known correlations established in this field, and they were found to be new teicoplaninlike molecules, bearing 8-hydroxydecanoic and 9-hydroxydecanoic acyl moieties. This metabolic transformation is likely due to hydroxylation in the OMEGA-2 and OMEGA-1 positions for metabolites 1 and 2, respectively, of the C-10 linear side chain of component A2-3. This might explain the low extent of metabolism of teicoplanin if we consider that only component A2-3 has a linear chain that is susceptible to such oxidation.