A PETROV-GALERKIN FORMULATION FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS USING EQUAL ORDER INTERPOLATION FOR VELOCITY AND PRESSURE

被引:34
作者
DESAMPAIO, PAB
机构
[1] Department of Civil Engineering, University College of Swansea, Swansea
关键词
D O I
10.1002/nme.1620310608
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A new Petrov-Galekin method for the incompressible Navier-Stokes equations is presented. The use of the so-called 'optimal upwind' parameter in multidimensions is justified by a time-scale analysis of the relevant physical processes. The resulting procedure circumvents the Babuska-Brezzi condition and allows equal order interpolation for velocity and pressure to be used.
引用
收藏
页码:1135 / 1149
页数:15
相关论文
共 16 条
[11]   GENERALIZED GALERKIN METHODS FOR 1ST-ORDER HYPERBOLIC-EQUATIONS [J].
MORTON, KW ;
PARROTT, AK .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 36 (02) :249-270
[12]  
MORTON KW, 1982, NUMERICAL METHODS FL, P1
[13]  
Patankar SV, 2018, SERIES COMPUTATIONAL
[14]  
Taylor C, 1981, FINITE ELEMENT PROGR
[15]   THE PATCH TEST FOR MIXED FORMULATIONS [J].
ZIENKIEWICZ, OC ;
QU, S ;
TAYLOR, RL ;
NAKAZAWA, S .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (10) :1873-1883
[16]   COMPRESSIBLE AND INCOMPRESSIBLE-FLOW - AN ALGORITHM FOR ALL SEASONS [J].
ZIENKIEWICZ, OC ;
SZMELTER, J ;
PERAIRE, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 78 (01) :105-121