FLOQUET THEORY AND THE NONADIABATIC BERRY PHASE

被引:43
作者
MOORE, DJ
机构
[1] Dept of Phys., Canterbury Univ., Christchurch
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 13期
关键词
D O I
10.1088/0305-4470/23/13/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An efficient calculational algorithm is provided for the operator decomposition approach to non-adiabatic Berry phases for systems with periodic Hamiltonians.
引用
收藏
页码:L665 / L668
页数:4
相关论文
共 17 条
[11]   CYCLIC QUANTUM EVOLUTION AND AHARONOV-ANANDAN GEOMETRIC PHASES IN SU(2) SPIN-COHERENT STATES [J].
LAYTON, E ;
HUANG, YH ;
CHU, SI .
PHYSICAL REVIEW A, 1990, 41 (01) :42-48
[12]   EFFECTS OF TIME-ODD ELECTRON PHONON COUPLING IN LIGAND-FIELD THEORY [J].
MOORE, DJ ;
STEDMAN, GE .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1990, 2 (11) :2559-2577
[13]  
MOORE DJ, 1990, J PHYS A, V23, P2047
[14]   STEADY STATES AND QUASIENERGIES OF A QUANTUM-MECHANICAL SYSTEM IN AN OSCILLATING FIELD [J].
SAMBE, H .
PHYSICAL REVIEW A, 1973, 7 (06) :2203-2213
[15]  
Shirley J. H., 1965, PHYS REV B, V138, P979
[16]   HOLONOMY, THE QUANTUM ADIABATIC THEOREM, AND BERRY PHASE [J].
SIMON, B .
PHYSICAL REVIEW LETTERS, 1983, 51 (24) :2167-2170
[17]   OBSERVATION OF BERRY TOPOLOGICAL PHASE BY USE OF AN OPTICAL FIBER [J].
TOMITA, A ;
CHIAO, RY .
PHYSICAL REVIEW LETTERS, 1986, 57 (08) :937-940