SHORT WAVELENGTH INSTABILITIES OF INCOMPRESSIBLE 3-DIMENSIONAL FLOWS AND GENERATION OF VORTICITY

被引:32
作者
LIFSCHITZ, A
机构
[1] Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago
关键词
D O I
10.1016/0375-9601(91)91023-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider three-dimensional flows of an inviscid (or asymptotically inviscid), incompressible fluid and present a method for describing the propagation of nonlinear small amplitude, short wavelength perturbations of these flows. Analyzing the evolution of these perturbations we obtain a local sufficient condition for the nonlinear instability of an arbitrary three-dimensional flow.
引用
收藏
页码:481 / 487
页数:7
相关论文
共 20 条
[1]   3-DIMENSIONAL INSTABILITY OF ELLIPTIC FLOW [J].
BAYLY, BJ .
PHYSICAL REVIEW LETTERS, 1986, 57 (17) :2160-2163
[2]   3-DIMENSIONAL CENTRIFUGAL-TYPE INSTABILITIES IN INVISCID TWO-DIMENSIONAL FLOWS [J].
BAYLY, BJ .
PHYSICS OF FLUIDS, 1988, 31 (01) :56-64
[3]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[4]  
CHOQUETBRUHAT Y, 1969, J MATH PURE APPL, V48, P117
[5]   THE EVOLUTION OF A TURBULENT VORTEX [J].
CHORIN, AJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 83 (04) :517-535
[6]  
CRAIK ADD, 1986, P ROY SOC LOND A MAT, V406, P13, DOI 10.1098/rspa.1986.0061
[7]   ON THE STABILITY OF ROTATING COMPRESSIBLE AND INVISCID FLUIDS [J].
ECKHOFF, KS ;
STORESLETTEN, L .
JOURNAL OF FLUID MECHANICS, 1980, 99 (JUL) :433-448
[8]   NOTE ON THE STABILITY OF STEADY INVISCID HELICAL GAS-FLOWS [J].
ECKHOFF, KS ;
STORESLETTEN, L .
JOURNAL OF FLUID MECHANICS, 1978, 89 (DEC) :401-411
[9]   INSTABILITY CRITERIA FOR THE FLOW OF AN INVISCID INCOMPRESSIBLE FLUID [J].
FRIEDLANDER, S ;
VISHIK, MM .
PHYSICAL REVIEW LETTERS, 1991, 66 (17) :2204-2206
[10]  
HAMEIRI E, 1990, APR SHERW THEOR C WI