EXPLICIT FUNCTIONAL DETERMINANTS IN 4 DIMENSIONS

被引:131
作者
BRANSON, TP
ORSTED, B
机构
[1] UNIV IOWA,DEPT MATH,IOWA CITY,IA 52242
[2] ODENSE UNIV,DEPT MATH & COMP SCI,DK-5230 ODENSE,DENMARK
关键词
D O I
10.2307/2048601
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Working on the four-sphere S4, a flat four-tours, S2 x S2, or a compact hyperbolic space, with a metric which is an arbitrary positive function times the standard one, we give explicit formulas for the functional determinants of the conformal Laplacian (Yamabe operator) and the square of the Dirac operator, and discuss qualitative features of the resulting variational problems. Our analysis actually applies in the conformal class of any Riemannian, locally symmetric, Einstein metric on a compact 4-manifold; and to any geometric differential operator which has positive definite leading symbol, and is a positive integral power of a conformally covariant operator.
引用
收藏
页码:669 / 682
页数:14
相关论文
共 29 条
[1]  
BRANSON T, IN PRESS DIFFERENTIA
[2]  
BRANSON T, RESIDUES ETA FUNCTIO
[3]  
BRANSON T, IN PRESS J FUNCT ANA
[4]  
BRANSON T, ESTIMATES EXTREMAL P
[5]  
BRANSON T, 2ND ORDER CONFORMAL
[6]   DIFFERENTIAL-OPERATORS CANONICALLY ASSOCIATED TO A CONFORMAL STRUCTURE [J].
BRANSON, TP .
MATHEMATICA SCANDINAVICA, 1985, 57 (02) :293-345
[7]   GROUP-REPRESENTATIONS ARISING FROM LORENTZ CONFORMAL GEOMETRY [J].
BRANSON, TP .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 74 (02) :199-291
[8]   CONFORMAL DEFORMATION AND THE HEAT OPERATOR [J].
BRANSON, TP ;
ORSTED, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1988, 37 (01) :83-110
[9]   THE ASYMPTOTICS OF THE LAPLACIAN ON A MANIFOLD WITH BOUNDARY [J].
BRANSON, TP ;
GILKEY, PB .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :245-272
[10]  
BRANSON TP, 1986, COMPOS MATH, V60, P261