HARMONIZABILITY, V-BOUNDEDNESS, (2,P)-BOUNDEDNESS OF STOCHASTIC-PROCESSES

被引:11
作者
HOUDRE, C [1 ]
机构
[1] UNIV N CAROLINA,CTR STOCHAST PROC,DEPT STAT,CHAPEL HILL,NC 27599
关键词
D O I
10.1007/BF01288557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Some new classes of discrete time non-stationary processes, related to the harmonizable and V-bounded classes, are introduced. A few characterizations are obtained which, in turn, unify the V-bounded theory. Our main results depend on a special form of Grothendieck's inequality. © 1990 Springer-Verlag.
引用
收藏
页码:39 / 54
页数:16
相关论文
共 28 条
[1]  
ABREU JL, 1970, B SOC MATH MEXICANA, V15, P48
[2]  
BARTLE RG, 1955, CAN J MATH, V7, P289
[3]  
Bochner S., 2020, HARMONIC ANAL THEORY
[4]  
BOCHNER S, 1956, 3RD P BERK S MATH ST, V2, P7
[5]  
CHATTERJI SD, 1982, MEASURE THEORY, V945, P269
[6]  
Dunford N., 1957, LINEAR OPERATORS 1
[7]  
Grothendieck A., 1996, B SOC MAT SAO PAULO, V8, P1
[8]   THE GROTHENDIECK INEQUALITY FOR BILINEAR-FORMS ON C-STAR-ALGEBRAS [J].
HAAGERUP, U .
ADVANCES IN MATHEMATICS, 1985, 56 (02) :93-116
[9]   PREDICTION THEORY AND FOURIER SERIES IN SEVERAL VARIABLES [J].
HELSON, H ;
LOWDENSLAGER, D .
ACTA MATHEMATICA, 1958, 99 (3-4) :165-202
[10]  
HOUDRE C, 1988, 245 U N CAR CTR STOC