HARMONIZABILITY, V-BOUNDEDNESS, (2,P)-BOUNDEDNESS OF STOCHASTIC-PROCESSES

被引:11
作者
HOUDRE, C [1 ]
机构
[1] UNIV N CAROLINA,CTR STOCHAST PROC,DEPT STAT,CHAPEL HILL,NC 27599
关键词
D O I
10.1007/BF01288557
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Some new classes of discrete time non-stationary processes, related to the harmonizable and V-bounded classes, are introduced. A few characterizations are obtained which, in turn, unify the V-bounded theory. Our main results depend on a special form of Grothendieck's inequality. © 1990 Springer-Verlag.
引用
收藏
页码:39 / 54
页数:16
相关论文
共 28 条
[21]   ON FOURIER-STIELTJES INTEGRALS [J].
PHILLIPS, RS .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1950, 69 (SEP) :312-323
[22]  
PIETSCH A, 1969, JENA MATH NATURWISS, V18, P243
[23]   GROTHENDIECK THEOREM FOR NONCOMMUTATIVE CSTAR-ALGEBRAS, WITH AN APPENDIX ON GROTHENDIECK CONSTANTS [J].
PISIER, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 29 (03) :397-415
[24]  
RAZANOV YA, 1959, THEOR PROBAB APPL, V4, P271
[25]  
ROGGE R, 1969, WISS Z FRIEDRICH SCH, V18, P253
[26]  
YLINEN K, 1986, LECT NOTES MATH, V1210, P365
[27]  
Zygmund A., 1959, TRIGONOMETRIC SERIES, VII
[28]  
[No title captured]