N-POINT MATRIX-ELEMENTS OF DYNAMICAL VERTEX OPERATORS OF THE HIGHER SPIN XXZ MODEL

被引:2
作者
BOUGOURZI, A
机构
[1] Centre de Recherches Math., Montreal Univ., Montreal, Que.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1995年 / 28卷 / 20期
关键词
D O I
10.1088/0305-4470/28/20/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the concept of conjugate vertex operators, first introduced by Dotsenko in the case of the bosonization of the SU(2) conformal field theory, to the bosonization of the dynamical vertex operators (type II in the classification of the Kyoto school) of the higher spin XXZ model. We show that the introduction of the conjugate vertex operators leads to simpler expressions for the N-point matrix elements of the dynamical vertex operators, that is, without redundant Jackson integrals that arise from the insertion of screening charges. In particular, the two-point matrix element can be represented without any integral.
引用
收藏
页码:5831 / 5842
页数:12
相关论文
共 16 条
[1]   UNIQUENESS OF THE BOSONIZATION OF THE UQ(SU(2)K) QUANTUM CURRENT-ALGEBRA [J].
BOUGOURZI, AH .
NUCLEAR PHYSICS B, 1993, 404 (1-2) :457-482
[2]   A FREE-FIELD REPRESENTATION OF THE SCREENING CURRENTS OF U-Q((SL(3))OVER-CAP) [J].
BOUGOURZI, AH ;
WESTON, RA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (04) :561-578
[3]  
BOUGOURZI AH, 1994, INT J MOD PHYS A, V9
[4]   QUANTUM AFFINE ALGEBRAS [J].
CHARI, V ;
PRESSLEY, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 142 (02) :261-283
[5]   DIAGONALIZATION OF THE XXZ HAMILTONIAN BY VERTEX OPERATORS [J].
DAVIES, B ;
FODA, O ;
JIMBO, M ;
MIWA, T ;
NAKAYASHIKI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 151 (01) :89-153
[6]   THE FREE FIELD REPRESENTATION OF THE SU(2) CONFORMAL FIELD-THEORY [J].
DOTSENKO, VS .
NUCLEAR PHYSICS B, 1990, 338 (03) :747-758
[7]   SOLVING THE SU(2) CONFORMAL FIELD-THEORY USING THE WAKIMOTO FREE FIELD REPRESENTATION [J].
DOTSENKO, VS .
NUCLEAR PHYSICS B, 1991, 358 (03) :547-570
[8]  
Drinfeld V.G., 1988, SOV MATH DOKL, V36, P212
[9]   BRST APPROACH TO MINIMAL MODELS [J].
FELDER, G .
NUCLEAR PHYSICS B, 1989, 317 (01) :215-236
[10]   QUANTUM AFFINE ALGEBRAS AND HOLONOMIC DIFFERENCE-EQUATIONS [J].
FRENKEL, IB ;
RESHETIKHIN, NY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :1-60