REPRESENTATION AND PROCESSING IN A STOCHASTIC NEURAL NETWORK - AN INTEGRATED APPROACH

被引:6
作者
VANHULLE, MM
ORBAN, GA
机构
[1] CATHOLIC UNIV LEUVEN,NEURO & PSYCHOFYSIOL LAB,CAMPUS GASTHUISBERG,HEREST,B-3000 LOUVAIN,BELGIUM
[2] CATHOLIC UNIV LEUVEN,DEPT ELECTROTECHNOL,B-3030 HEVERLEE,BELGIUM
关键词
SUBJECTIVE PROBABILITY DENSITY FUNCTION; STOCHASTIC NETWORKS; BIOLOGICAL NETWORKS;
D O I
10.1016/0893-6080(91)90018-Z
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To relate the stochastic properties of individual neurons to the representational and processing abilities of a network built with these neurons, a generic framework is introduced. Herein, representational abilities become expressed in terms of the type of probability density function the network uses to encode the environment from which it receives input. Processing abilities are characterized by the type of processing procedure used by the network, an analogue of simulated annealing, and are shown to be ultimately related to representational abilities. The condition under which the analogue converges is established.
引用
收藏
页码:643 / 655
页数:13
相关论文
共 38 条
[21]   SIMULTANEOUS ORDER IN NERVOUS NETS FROM A FUNCTIONAL STANDPOINT [J].
KOENDERINK, JJ .
BIOLOGICAL CYBERNETICS, 1984, 50 (01) :35-41
[22]  
Kohonen T., 1984, SELF ORG ASS MEMORY
[23]  
KRYUKOV VI, 1984, CYBERNET SYST, V2, P261
[24]  
LEVY BC, 1987, 1ST IEEE INT C NEUR, P681
[26]  
LUENBERGER DG, 1979, INTRO DYNAMIC SYSTEM
[27]  
MARROQUIN J, 1984, MIT792 AI LAB MEM
[28]  
Mazur P., 1984, NON EQUILIBRIUM THER
[29]   THE CAPACITY OF THE HOPFIELD ASSOCIATIVE MEMORY [J].
MCELIECE, RJ ;
POSNER, EC ;
RODEMICH, ER ;
VENKATESH, SS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1987, 33 (04) :461-482
[30]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092