RETROFIT OF COMPLEX AND ENERGY INTENSIVE PROCESSES .1.

被引:17
作者
KOVAC, A
GLAVIC, P
机构
关键词
D O I
10.1016/0098-1354(94)00121-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Thermodynamic methods of process synthesis are very useful for the design of complex and energy intensive processes, but they cannot be used simultaneously with material balances. Algorithmic methods are simultaneous, but they are difficult to solve for complex and energy intensive processes because the number of variables increases with the number of combinations. We can approach the optimal design for complex and energy intensive processes if we combine the two methods. The combined approach is composed of two steps, the thermodynamic and the algorithmic one. In the first one we eliminate unpromising structures and we include new, potentially good ones by studying an Extended Grand Composite Curve. In the second one we can optimize the superstructure obtained by using Mixed-Integer Nonlinear Programming. The combined approach can be used for optimal design of energy and material parameters of continuous processes as well as for energy recovery. In a retrofit case study we have targeted energy saving using rigorous models and fixed amount how rates to find two promising structures, and then we have used parameter and simultaneous structural optimization to determine the best alternative and its parameters.
引用
收藏
页码:1255 / 1270
页数:16
相关论文
共 31 条
[11]  
GLAVIC P, 1988, CHEM ENG SCI, V43, P595
[12]  
HOMSAK M, 1991, P COPE 91, P363
[13]  
KEMP IC, 1988, APPLICATION PINCH TE, P239
[14]  
KOCIS GR, 1987, IND ENG CHEM RES, V26, P1871
[15]  
KOCIS GR, 1988, 064388 ENG DES RES C
[16]  
KRAVANJA Z, 1990, THESIS TF MARIBOR
[17]   SIMULTANEOUS-OPTIMIZATION AND HEAT INTEGRATION WITH PROCESS SIMULATORS [J].
LANG, YD ;
BIEGLER, LT ;
GROSSMANN, IE .
COMPUTERS & CHEMICAL ENGINEERING, 1988, 12 (04) :311-327
[18]   COST OPTIMUM HEAT-EXCHANGER NETWORKS .1. MINIMUM ENERGY AND CAPITAL USING SIMPLE-MODELS FOR CAPITAL COSTS [J].
LINNHOFF, B ;
AHMAD, S .
COMPUTERS & CHEMICAL ENGINEERING, 1990, 14 (07) :729-750
[19]  
Linnhoff B., 1982, AICHE J
[20]  
LINNHOFF B, 1989, ENERGY RES TECH, V11, P121