UNIVERSALITY IN QUASI-PERIODIC RAYLEIGH-BENARD CONVECTION

被引:17
作者
ECKE, RE [1 ]
MAINIERI, R [1 ]
SULLIVAN, TS [1 ]
机构
[1] UNIV CALIF LOS ALAMOS SCI LAB, CTR NONLINEAR STUDIES, LOS ALAMOS, NM 87545 USA
来源
PHYSICAL REVIEW A | 1991年 / 44卷 / 12期
关键词
D O I
10.1103/PhysRevA.44.8103
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study universal scaling properties of quasiperiodic Rayleigh-Benard convection in a He-3-superfluid-He-4 mixture. The critical line is located in a parameter space of Rayleigh and Prandtl numbers using a transient-Poincare-section technique to identify transitions from nodal periodic points to spiral periodic points within resonance horns. We measure the radial and angular contraction rates and extract the linear-stability eigenvalues (Flouquet multipliers) of the periodic point. At the crossings of the critical line with the lines of fixed golden-mean-tail winding number we determine the universality class of our experimental dynamics using f(alpha) and trajectory-scaling-function analyses. A technique is used to obtain a robust five-scale approximation to the universal trajectory scaling function. Different methods of multifractal analysis are employed and an understanding of statistical and systematic errors in these procedures is developed. The power law of the inflection point of the map, determined for three golden-mean-tail winding numbers, is 2.9 +/- 0.3, corresponding to the universality class of the sine-circle map.
引用
收藏
页码:8103 / 8118
页数:16
相关论文
共 52 条
[41]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[42]   QUASI-PERIODIC BEHAVIOR OF DC-BIASED SEMICONDUCTOR ELECTRONIC BREAKDOWN [J].
PEINKE, J ;
PARISI, J ;
HUEBENER, RP ;
MINH, DV ;
KELLER, P .
EUROPHYSICS LETTERS, 1990, 12 (01) :13-18
[43]  
RAND D, 1987, 8TH P INT C MATH PHY
[44]   STATISTICAL-MECHANICS ON A COMPACT SET WITH Z NU ACTION SATISFYING EXPANSIVENESS AND SPECIFICATION [J].
RUELLE, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 185 (458) :237-251
[45]  
SANO M, 1983, TURBULENCE CHAOTIC P, P167
[46]   SCALING BEHAVIOR IN A MAP OF A CIRCLE ONTO ITSELF - EMPIRICAL RESULTS [J].
SHENKER, SJ .
PHYSICA D, 1982, 5 (2-3) :405-411
[47]  
SINAI YG, 1972, RUSSION MATH SURVEYS, V166, P21
[48]  
STAVANS J, 1986, SPRINGER SERIES SYNE, V32, P207
[49]  
Sullivan D, 1987, NONLINEAR EVOLUTION, P101
[50]  
Takens F., 1981, DYNAMICAL SYSTEMS TU, V898, P366, DOI [10.1007/BFb0091924, 10.1007/BFB0091924, 10.1007/bfb0091924, DOI 10.1007/BFB0091924]